• Photonics Insights
  • Vol. 1, Issue 1, R03 (2022)
Yinghui Guo1,2,3, Mingbo Pu1,2,3,*, Fei Zhang1,2,3, Mingfeng Xu1,2,3..., Xiong Li1,3, Xiaoliang Ma1,3 and Xiangang Luo1,3,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
  • 2Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, China
  • 3School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, China
  • show less
    DOI: 10.3788/PI.2022.R03 Cite this Article Set citation alerts
    Yinghui Guo, Mingbo Pu, Fei Zhang, Mingfeng Xu, Xiong Li, Xiaoliang Ma, Xiangang Luo, "Classical and generalized geometric phase in electromagnetic metasurfaces," Photon. Insights 1, R03 (2022) Copy Citation Text show less
    References

    [1] P. K. Aravind. A simple proof of Pancharatnam’s theorem. Opt. Commun., 94, 191(1992).

    [2] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 392, 45(1984).

    [3] Y. Aharonov, D. Bohm. Significance of electromagnetic potentials in the quantum theory. Phys. Rev., 115, 485(1959).

    [4] R. Y. Chiao, Y.-S. Wu. Manifestations of Berry’s topological phase for the photon. Phys. Rev. Lett., 57, 933(1986).

    [5] Y. Aharonov, J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 58, 1593(1987).

    [6] J. Zak. Berry’s phase for energy bands in solids. Phys. Rev. Lett., 62, 2747(1989).

    [7] S. Pancharatnam. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. A, 44, 398(1956).

    [8] R. Simon, H. J. Kimble, E. C. G. Sudarshan. Evolving geometric phase and its dynamical manifestation as a frequency shift: an optical experiment. Phys. Rev. Lett., 61, 19(1988).

    [9] R. Bhandari. SU (2) phase jumps and geometric phases. Phys. Lett. A, 157, 221(1991).

    [10] M. V. Berry. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 34, 1401(1987).

    [11] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [12] C. P. Jisha, S. Nolte, A. Alberucci. Geometric phase in optics: from wavefront manipulation to waveguiding. Laser Photonics Rev., 15, 2100003(2021).

    [13] J. Anandan. The geometric phase. Nature, 360, 307(1992).

    [14] M. Berry. Geometric phase memories. Nat. Phys., 6, 148(2010).

    [15] C. A. Mead. The geometric phase in molecular systems. Rev. Mod. Phys., 64, 51(1992).

    [16] E. Cohen et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys., 1, 437(2019).

    [17] A. G. Fox. An adjustable wave-guide phase changer. Proc. IRE, 35, 1489(1947).

    [18] S. Pancharatnam. Achromatic combinations of birefringent plates. Proc. Indian Acad. Sci. A, 41, 137(1955).

    [19] Z. Bomzon, V. Kleiner, E. Hasman. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett., 26, 1424(2001).

    [20] Z. Bomzon et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett., 27, 1141(2002).

    [21] Y. Guo et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep., 5, 8434(2015).

    [22] M. Pu et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep., 5, 9822(2015).

    [23] D. Mawet et al. Annular groove phase mask coronagraph. Astrophys. J., 633, 1191(2005).

    [24] G. Biener et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt. Lett., 27, 1875(2002).

    [25] E. Hasman et al. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett., 82, 328(2003).

    [26] D. Tang et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev., 9, 713(2015).

    [27] E. Karimi et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl., 3, e167(2014).

    [28] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308(2015).

    [29] X. Ma et al. A planar chiral meta-surface for optical vortex generation and focusing. Sci. Rep., 5, 10365(2015).

    [30] M. Pu et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv., 1, e1500396(2015).

    [31] F. Zhang et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv. Mater., 32, 1908194(2020).

    [32] D. Lin et al. Dielectric gradient metasurface optical elements. Science, 345, 298(2014).

    [33] F. Aieta et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342(2015).

    [34] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937(2015).

    [35] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190(2016).

    [36] F. Ding et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev., 14, 2000116(2020).

    [37] M. Khorasaninejad et al. Multispectral chiral imaging with a metalens. Nano Lett., 16, 4595(2016).

    [38] X. Luo. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron, 58, 594201(2015).

    [39] Z. Li et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photonics Rev., 12, 1800064(2018).

    [40] Z. Yue et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron. Sci., 1, 210014(2022).

    [41] X. Zang et al. Metasurfaces for manipulating terahertz waves. Light Adv. Manuf., 2, 148(2021).

    [42] K. Liu et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface. Light Adv. Manuf., 2, 251(2021).

    [43] X. Luo et al. Broadband spin Hall effect of light in single nanoapertures. Light Sci. Appl., 6, e16276(2017).

    [44] X. Ling et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci. Appl., 4, e290(2015).

    [45] Y. Meng et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl., 10, 235(2021).

    [46] L. Huang et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [47] X. Li et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv., 2, e1601102(2016).

    [48] G. Qu et al. Reprogrammable meta-hologram for optical encryption. Nat. Commun., 11, 5484(2020).

    [49] Y. Hu et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett., 20, 994(2020).

    [50] D. Wen et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [51] J.-H. Park, B. Lee. Holographic techniques for augmented reality and virtual reality near-eye displays. Light Adv. Manuf., 3, 1(2022).

    [52] Z.-L. Deng et al. Multi-freedom metasurface empowered vectorial holography. Nanophotonics, 11, 0622(2022).

    [53] H. Gao et al. Recent advances in optical dynamic meta-holography. Opto-Electronic Adv., 4, 210030(2021).

    [54] Y. Ming et al. Creating composite vortex beams with a single geometric metasurface. Adv. Mater., 34, 2109714(2022).

    [55] S. Zhang et al. Generation of achromatic auto-focusing Airy beam for visible light by an all-dielectric metasurface. J. Appl. Phys., 131, 043104(2022).

    [56] Q. Zhou et al. Generation of perfect vortex beams by dielectric geometric metasurface for visible light. Laser Photon. Rev., 15, 2100390(2021).

    [57] Y. Guo et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater., 6, 1800592(2018).

    [58] S. Xiao et al. Flexible coherent control of plasmonic spin-Hall effect. Nat. Commun., 6, 8360(2015).

    [59] T. Ma et al. Benchmarking deep learning-based models on nanophotonic inverse design problems. Opto-Electron. Sci., 1, 210012(2022).

    [60] Y. Guo et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics, 3, 2022(2016).

    [61] Y. Guo et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion. Sci. Rep., 6, 30154(2016).

    [62] X. Zhang et al. A quasi-continuous all-dielectric metasurface for broadband and high-efficiency holographic images. J. Phys. D, 53, 465105(2020).

    [63] X. Zhang et al. Ultra-broadband metasurface holography via quasi-continuous nano-slits. J. Phys. D, 53, 104002(2019).

    [64] D. Wang et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces. Small, 15, 1900483(2019).

    [65] D. Hakobyan et al. Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces. Adv. Opt. Mater., 4, 306(2016).

    [66] M. Xu et al. Topology-optimized catenary-like metasurface for wide-angle and high-efficiency deflection: from a discrete to continuous geometric phase. Opt. Express, 29, 10181(2021).

    [67] Z. Gong et al. Broadband efficient vortex beam generation with metallic helix array. Appl. Phys. Lett., 113, 071104(2018).

    [68] D. Hakobyan et al. Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces. Adv. Opt. Mater., 4, 306(2015).

    [69] X. Luo et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv. Opt. Mater., 8, 2001194(2020).

    [70] M. Pu et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express, 25, 31471(2017).

    [71] F. Zhang et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv. Mater., 33, 2008157(2021).

    [72] Y. Guo et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface. Adv. Opt. Mater., 7, 1900503(2019).

    [73] F. Zhang et al. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces. Nanophotonics, 9, 20200057(2020).

    [74] X. Chen et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun., 3, 1198(2012).

    [75] F. Zhang et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electron. Eng., 44, 319(2017).

    [76] F. Zhang et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv. Fun. Mater., 27, 1704295(2017).

    [77] J. P. B. Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [78] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896(2017).

    [79] J. Cai et al. Simultaneous polarization filtering and wavefront shaping enabled by localized polarization-selective interference. Sci. Rep., 10, 14477(2020).

    [80] Q. Fan et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys. Rev. Lett., 125, 267402(2020).

    [81] Y. Yuan et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun., 11, 4186(2020).

    [82] Y. Bao et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci. Adv., 7, eabh0365(2021).

    [83] D. Wang et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl., 10, 67(2021).

    [84] D. Wang et al. High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics, 10, 685(2021).

    [85] I. Kim et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun., 12, 3614(2021).

    [86] A. H. Dorrah et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 15, 287(2021).

    [87] N. A. Rubin et al. Jones matrix holography with metasurfaces. Sci. Adv., 7, eabg7488(2021).

    [88] M. Liu et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun., 12, 2230(2021).

    [89] F. Zhang et al. Synthetic vector optical fields with spatial and temporal tenability. Sci. China Phys. Mech. Astron., 65, 254211(2022).

    [90] J. Ni et al. Multidimensional phase singularities in nanophotonics. Science, 374, eabj0039(2021).

    [91] S. Zhang et al. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface. Laser Photonics Rev., 14, 2000062(2020).

    [92] Y. Guo et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci. Appl., 10, 63(2021).

    [93] X. Luo et al. Symmetric and asymmetric photonic spin-orbit interaction in metasurfaces. Prog. Quant. Electron., 79, 100344(2021).

    [94] Z. Fei et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions. Opto-Electron Eng., 47, 200366(2020).

    [95] M. Tymchenko et al. Gradient nonlinear Pancharatnam-Berry metasurfaces. Phys. Rev. Lett., 115, 207403(2015).

    [96] G. Li et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater., 14, 607(2015).

    [97] N. Segal et al. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics, 9, 180(2015).

    [98] S. Chen et al. Symmetry-selective third-harmonic generation from plasmonic metacrystals. Phys. Rev. Lett., 113, 033901(2014).

    [99] K. Konishi et al. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Phys. Rev. Lett., 112, 135502(2014).

    [100] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [101] G. Li et al. Spin and geometric phase control four-wave mixing from metasurfaces. Laser Photon. Rev., 12, 1800034(2018).

    [102] M. Ma et al. Optical information multiplexing with nonlinear coding metasurfaces. Laser Photon. Rev., 13, 1900045(2019).

    [103] Z. Li et al. Multiplexed nondiffracting nonlinear metasurfaces. Adv. Funct. Mater., 30, 1910744(2020).

    [104] C. Schlickriede et al. Imaging through nonlinear metalens using second harmonic generation. Adv. Mater., 30, 1703843(2018).

    [105] F. Walter et al. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett., 17, 3171(2017).

    [106] B. Reineke et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Lett., 19, 6585(2019).

    [107] W. Zhao et al. Chirality-selected second-harmonic holography with phase and binary amplitude manipulation. Nanoscale, 12, 13330(2020).

    [108] Z. Gao et al. Reconstruction of multidimensional nonlinear polarization response of Pancharatnam-Berry metasurfaces. Phys. Rev. B, 104, 054303(2021).

    [109] C. McDonnell et al. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces. Nat. Commun., 12, 30(2021).

    [110] W. Ye et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 7, 11930(2016).

    [111] M. A. Kats et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Nat. Acad. Sci., 109, 12364(2012).

    [112] X. Xie et al. Generalizd Pancharatnam-Berry phase in rotationally symmetric meta-atoms. Phys. Rev. Lett., 126, 3902(2021).

    [113] S. Yijia et al. Achromatic metalens based on coordinative modulation of propagation phase and geometric phase. Opto-Electron Eng., 47, 200237(2020).

    [114] N. V. Tabiryan et al. Advances in transparent planar optics: enabling large aperture, ultrathin lenses. Adv. Opt. Mater., 9, 2001692(2021).

    [115] Y. Tang et al. Nonlinear vectorial metasurface for optical encryption. Phys. Rev. Appl., 12, 024028(2019).

    [116] Y. Zhang et al. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron. Adv., 3, 200002(2020).

    [117] Y. Wang, Q. Fan, T. Xu. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron. Adv., 4, 200008(2021).

    [118] R. Zhao et al. Multichannel vectorial holographic display and encryption. Light Sci. Appl., 7, 95(2018).

    [119] E. Arbabi et al. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics, 6, 2712(2019).

    [120] L. Fang et al. Vectorial doppler metrology. Nat. Commun., 12, 4186(2021).

    [121] E. Wang et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields. Adv. Opt. Mater., 8, 1901674(2020).

    [122] J. Wang et al. Shifting beams at normal incidence via controlling momentum-space geometric phases. Nat. Commun., 12, 6046(2021).

    [123] Z. Zhang et al. Enhancing the efficiency of the topological phase transitions in spin–orbit photonics. Appl. Phys. Lett., 120, 181102(2022).

    [124] W. Zhu et al. Wave-vector-varying Pancharatnam-Berry phase photonic spin hall effect. Phys. Rev. Lett., 126, 083901(2021).

    [125] X. Ling et al. Topology-induced phase transitions in spin-orbit photonics. Laser Photon. Rev., 15, 2000492(2021).

    [126] M. Pu et al. Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics, 5, 3198(2018).

    Yinghui Guo, Mingbo Pu, Fei Zhang, Mingfeng Xu, Xiong Li, Xiaoliang Ma, Xiangang Luo, "Classical and generalized geometric phase in electromagnetic metasurfaces," Photon. Insights 1, R03 (2022)
    Download Citation