• Acta Optica Sinica
  • Vol. 43, Issue 17, 1719001 (2023)
Li Jiang1、2、3, Rui Song1、2、3、*, Jing Hou1、2、3、**, Shengping Chen1、2、3, Bin Zhang1、2、3, Linyong Yang1、2、3, Jiaxin Song1、2、3, Weiqiang Yang1、2、3, and Kai Han1、2
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/AOS230763 Cite this Article Set citation alerts
    Li Jiang, Rui Song, Jing Hou, Shengping Chen, Bin Zhang, Linyong Yang, Jiaxin Song, Weiqiang Yang, Kai Han. Research Progress of High-Power Visible to Near-Infrared Supercontinuum Source[J]. Acta Optica Sinica, 2023, 43(17): 1719001 Copy Citation Text show less
    References

    [1] Alfano R R[M]. The supercontinuum laser source: the ultimate white light, 434(2016).

    [2] Dudley J M, Taylor J R[M]. Supercontinuum generation in optical fibers(2010).

    [3] Xie X H, Deng Y P, Johnson S L. Compact and robust supercontinuum generation and post-compression using multiple thin plates[J]. High Power Laser Science and Engineering, 9, e66(2021).

    [4] Wang Y Y, Zhang N, Zhang P Q et al. Broadband and coherent supercontinuum generation in all-normal-dispersion double-clad Ge-As-Se-Te fiber taper[J]. Chinese Journal of Lasers, 49, 0101010(2022).

    [5] Zhang J, Cai Y R, Huang Q Q et al. Near-infrared comb spectroscopy technology based on flat coherent supercontinuum[J]. Chinese Journal of Lasers, 48, 0711003(2021).

    [6] Gosnell T R, Taylor A J, Greene D P. Supercontinuum generation at 248 nm using high-pressure gases[J]. Optics Letters, 15, 130-132(1990).

    [7] Jimbo T, Caplan V L, Li Q X et al. Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations[J]. Optics Letters, 12, 477-479(1987).

    [8] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000 Å via four-photon coupling in glass[J]. Physical Review Letters, 24, 584-587(1970).

    [9] Yang L Y, Yang Y K, Zhang B et al. Record power and efficient mid-infrared supercontinuum generation in Germania fiber with high stability[J]. High Power Laser Science and Engineering, 10, e36(2022).

    [10] Sierro B, Hänzi P, Spangenberg D et al. Reducing the noise of fiber supercontinuum sources to its limits by exploiting cascaded soliton and wave breaking nonlinear dynamics[J]. Optica, 9, 352-359(2022).

    [11] Woyessa G, Kwarkye K, Dasa M K et al. Power stable 1.5-10.5 µm cascaded mid-infrared supercontinuum laser without thulium amplifier[J]. Optics Letters, 46, 1129-1132(2021).

    [12] Genier E, Grelet S, Engelsholm R D et al. Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670–1390  nm[J]. Optics Letters, 46, 1820-1823(2021).

    [14] Manninen A, Kääriäinen T, Parviainen T et al. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source[J]. Optics Express, 22, 7172-7177(2014).

    [15] Yamanaka M, Kawagoe H, Nishizawa N. High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band[J]. Applied Physics Express, 9, 022701(2016).

    [16] Barrick J, Doblas A, Gardner M R et al. High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source[J]. Optics Letters, 41, 5620-5623(2016).

    [17] Hakala T, Suomalainen J, Kaasalainen S et al. Full waveform hyperspectral LiDAR for terrestrial laser scanning[J]. Optics Express, 20, 7119-7127(2012).

    [18] Lamb R A. A review of ultra-short pulse lasers for military remote sensing and rangefinding[J]. Proceedings of SPIE, 7483, 748308(2009).

    [19] Yang L Y, Zhang B, Hou J. Progress on high-power supercontinuum laser sources at 3-5 μm[J]. Chinese Journal of Lasers, 49, 0101001(2022).

    [20] Yang W Q, Song R, Han K et al. Research progress of supercontinuum laser source[J]. Journal of National University of Defense Technology, 42, 1-9(2020).

    [21] Hou J, Chen S P, Chen Z L et al. Recent developments and key technology analysis of high power supercontinuum source[J]. Laser & Optoelectronics Progress, 50, 080010(2013).

    [22] Bian Y X, Jiao K R, Wu X C et al. Utilizing phase-shifted long-period fiber grating to suppress spectral broadening of a high-power fiber MOPA laser system[J]. High Power Laser Science and Engineering, 9, e39(2021).

    [23] Ma P F, Xiao H, Meng D R et al. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression[J]. High Power Laser Science and Engineering, 6, e57(2018).

    [24] Hui Z Q, Zhang X L, Xu W S et al. 500-nm broadband light generation in highly nonlinear dispersion shifted fiber by soliton laser[J]. Optics & Laser Technology, 157, 108712(2023).

    [25] Chai T, Li X H, Guo P L. Investigation of mid-infrared parabolic pulse evolution in a mode-locked Er-doped fiber laser based on the nonlinear polarization rotation technique[J]. Journal of Optics, 21, 025501(2019).

    [26] Li X H, Huang X W, Hu X C et al. Recent progress on mid-infrared pulsed fiber lasers and the applications[J]. Optics & Laser Technology, 158, 108898(2023).

    [27] Dudley J M, Taylor J R. Ten years of nonlinear optics in photonic crystal fibre[J]. Nature Photonics, 3, 85-90(2009).

    [28] Qi X, Chen S P, Li Z H et al. High-power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm[J]. Optics Letters, 43, 1019-1022(2018).

    [29] Zhang H Y, Li Y, Yan D L et al. All-fiber high power supercontinuum generation by cascaded photonic crystal fibers ranging from 370 nm to 2400 nm[J]. IEEE Photonics Journal, 12, 7101608(2020).

    [30] Zhang H Y, Li F Y, Liao R Y et al. Supercontinuum generation of 314.7 W ranging from 390 to 2400  nm by tapered photonic crystal fiber[J]. Optics Letters, 46, 1429-1432(2021).

    [31] Liu Z W, Wright L G, Christodoulides D N et al. Kerr self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber[J]. Optics Letters, 41, 3675-3678(2016).

    [32] Mondal P, Varshney S K. Experimental observation of Kerr beam self-cleaning in graded-index multimode fiber from higher-order mode to fundamental mode[J]. Optical Fiber Technology, 65, 102587(2021).

    [33] Krupa K, Tonello A, Shalaby B M et al. Spatial beam self-cleaning in multimode fibres[J]. Nature Photonics, 11, 237-241(2017).

    [34] Krupa K, Louot C, Couderc V et al. Spatiotemporal characterization of supercontinuum extending from the visible to the mid-infrared in a multimode graded-index optical fiber[J]. Optics Letters, 41, 5785-5788(2016).

    [35] Krupa K, Tonello A, Barthélémy A et al. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves[J]. Physical Review Letters, 116, 183901(2016).

    [36] Pourbeyram H, Agrawal G P, Mafi A. Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber[J]. Applied Physics Letters, 102, 201107(2013).

    [37] Lopez-Galmiche G, Sanjabi Eznaveh Z, Eftekhar M A et al. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm[J]. Optics Letters, 41, 2553(2016).

    [38] Zhang T, Zhang W, Hu X H et al. All fiber structured supercontinuum source based on graded-index multimode fiber[J]. Laser Physics Letters, 19, 035101(2022).

    [39] Zhang T, Hu X H, Pan R et al. 30 W all-fiber supercontinuum generation via graded-index multimode fiber pumped by picoseconds laser pulse[J]. Optics & Laser Technology, 159, 108943(2023).

    [40] Jiang L, Song R, Hou J. Hundred-watt level all-fiber visible supercontinuum generation from a graded-index multimode fiber[J]. Chinese Optics Letters, 21, 051403(2023).

    [41] Chen X L, Lou F G, He Y et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 39, 0336001(2019).

    [42] Pioger P H, Couderc V, Leproux P et al. High spectral power density supercontinuum generation in a nonlinear fiber amplifier[J]. Optics Express, 15, 11358-11363(2007).

    [43] Song R, Hou J, Chen S P et al. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier[J]. Optics Letters, 37, 1529-1531(2012).

    [44] Song R, Hou J, Liu T et al. A hundreds of watt all-fiber near-infrared supercontinuum[J]. Laser Physics Letters, 10, 065402(2013).

    [45] Jiang L, Song R, He J R et al. 714 W all-fiber supercontinuum generation from an ytterbium-doped fiber amplifier[J]. Optics & Laser Technology, 161, 109168(2023).

    [46] Rao Y J, Wang Z N, Zhang W L[M]. Principle and application of fiber random laser(2018).

    [47] Lizárraga N, Puente N P, Chaikina E I et al. Single-mode Er-doped fiber random laser with distributed Bragg grating feedback[J]. Optics Express, 17, 395-404(2009).

    [48] Ma R, Zhang W L, Wang S S et al. Simultaneous generation of random lasing and supercontinuum in a completely-opened fiber structure[J]. Laser Physics Letters, 15, 085111(2018).

    [49] Ma R, Rao Y J, Zhang W L et al. Backward supercontinuum generation excited by random lasing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0901105(2018).

    [50] Arun S, Choudhury V, Balaswamy V et al. High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers[J]. Optics Express, 26, 7979-7984(2018).

    [51] Arun S, Choudhury V, Balaswamy V et al. Octave-spanning, continuous-wave supercontinuum generation with record power using standard telecom fibers pumped with power-combined fiber lasers[J]. Optics Letters, 45, 1172-1175(2020).

    [52] Cheng X, Dong J Y, Zeng X et al. 130 W continuous-wave supercontinuum generation within a random Raman fiber laser[J]. Optical Fiber Technology, 68, 102825(2022).

    [53] Qi T C, Yang Y S, Li D et al. Kilowatt-level supercontinuum generation in random Raman fiber laser oscillator with full-open cavity[J]. Journal of Lightwave Technology, 40, 7159-7166(2022).

    [54] Chen L J, Song R, Lei C M et al. Random fiber laser directly generates visible to near-infrared supercontinuum[J]. Optics Express, 27, 29781-29788(2019).

    [55] Chen L, Song R, Lei C et al. Influences of position of ytterbium-doped fiber and ASE pump on spectral properties of random fiber laser[J]. Optics Express, 27, 9647-9654(2019).

    [56] He J R, Song R, Tao Y et al. Supercontinuum generation directly from a random fiber laser based on photonic crystal fiber[J]. Optics Express, 28, 27308-27315(2020).

    [57] He J R, Song R, Jiang L et al. Supercontinuum generated in an all-polarization-maintaining random fiber laser structure[J]. Optics Express, 29, 28843-28851(2021).

    [58] He J R. Study on supercontinuum generated by random fiber laser[D], 55-57(2022).

    [59] Gapontsev V, Fomin F A, Abramov M. Diffraction limited ultra-high power fibre lasers[C], AWA1(2010).

    [60] Zhou H, Jin A, Chen Z et al. Combined supercontinuum source with >200 W power using a 3×1 broadband fiber power combiner[J]. Optics Letters, 40, 3810-3813(2015).

    [61] Zhang B. The study on the incoherent combination of near-infrared supercontinuum source[D], 34-41(2015).

    [62] Sun C, Ge T W, Cao K et al. 143.4 W high power combined white supercontinuum source using a (7×1) supercontinuum fiber combiner[J]. Frontiers in Physics, 10, 1043435(2022).

    Li Jiang, Rui Song, Jing Hou, Shengping Chen, Bin Zhang, Linyong Yang, Jiaxin Song, Weiqiang Yang, Kai Han. Research Progress of High-Power Visible to Near-Infrared Supercontinuum Source[J]. Acta Optica Sinica, 2023, 43(17): 1719001
    Download Citation