• Spectroscopy and Spectral Analysis
  • Vol. 31, Issue 10, 2702 (2011)
LI Lin1,*, XU Shuo2, AN Xin3, and ZHANG Lu-da4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2011)10-2702-04 Cite this Article
    LI Lin, XU Shuo, AN Xin, ZHANG Lu-da. A Novel Approach to NIR Spectral Quantitative Analysis:Semi-Supervised Least-Squares Support Vector Regression Machine[J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2702 Copy Citation Text show less
    References

    [2] Abdi H. Partial Least Squares (PLS) Regression. Encyclopedia for Research Methods for the Social Sciences, Lewis-Beck M, Bryman A, Futing T, eds. Sage, Thousand Oaks, CA, 2003. 792.

    [3] Vapnik V N. The Nature of Statistical Learning Theory, 2nd Edition. New York: Springer Verlag, 1999.

    [4] Suykens J A K, Van Gestel T, Brabanter J D, et al. Least Squares Support Vector Machines. World Scientific Pub. Co., Singapore, 2002.

    [5] Blum A, Mitchell T. Combining Labeled and Unlabeled Data with Co-Training. Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT), Madison, Wisconsin, United States, 1998. 92.

    [6] Zhu X. Semi-Supervised Learning Literature Survey. Technical Report 1530, Department of Computer Sciences, University of Wisconsin, Madison, 2008.

    [7] Chapelle O, Schlkopf B, Zien A. Semi-Supervised Learning. Cambridge: MIT Press, 2006.

    [8] Chapelle O, Sindhwani V, Keerthi S S. Journal of Machine Learning Research, 2008, 9(2): 203.

    [9] Cortes C, Mohri M. On Transductive Regression. Advances in Neural Information Processing Systems 19, Schlkopf B, Platt J, Hoffman T, eds. MIT Press, Cambridge, MA, 2007. 305.

    [10] Brefeld U, Crtner T, Scheffer T, et al. Efficient Co-Regularised Least Squares Regression. Proceedings of the 23nd International Conference on Machine Learning(ICML), 2006. 137.

    [11] Zhou Z-H, Li M. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(11): 1479.

    [12] Van Gestel T, Suykens J A K, Baesens B, et al. Machine Learning, 2004, 54(1): 5.

    [13] Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004.

    [14] Keerthi S S, Lin C J. Neural Computation, 2003, 15(7): 1667.

    [15] Lin H T, Lin C J. A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-Type Methods. Technical Report, Department of Computer Science, National Taiwan University, 2003.

    [16] Hsu C-W, Chang C-C, Lin C-J. A Practical Guide to Support Vector Classification. Available [online]: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

    [17] Xu S, Ma F J, Tao L. Learn from the Information Contained in the False Splice Sites as well as in the True Splice Sites using SVM. Proceedings of the International Conference on Intelligent Systems and Knowledge Engineering(ISKE), Chengdu, China, 2007. 1360.

    LI Lin, XU Shuo, AN Xin, ZHANG Lu-da. A Novel Approach to NIR Spectral Quantitative Analysis:Semi-Supervised Least-Squares Support Vector Regression Machine[J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2702
    Download Citation