• High Power Laser Science and Engineering
  • Vol. 11, Issue 1, 010000e4 (2023)
Shuman Du1、2, Xiong Shen1、3, Wenhai Liang1、2, Peng Wang1、3, Jun Liu1、2、3、*, and Ruxin Li1、2、3、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
  • 3Zhangjiang Laboratory, Shanghai, China
  • show less
    DOI: 10.1017/hpl.2023.5 Cite this Article Set citation alerts
    Shuman Du, Xiong Shen, Wenhai Liang, Peng Wang, Jun Liu, Ruxin Li. A 100-PW compressor based on single-pass single-grating pair[J]. High Power Laser Science and Engineering, 2023, 11(1): 010000e4 Copy Citation Text show less

    Abstract

    A multistep pulse compressor (MPC) based on a single-pass single-grating pair (SSGP) is proposed to simplify the entire multi-petawatt (PW) compressor. Only one grating pair with relatively long perpendicular distance is used to generate the same amount of spectral chirp compared with a four-grating main compressor. As SSGP compressor induces the largest spatial chirp, it can introduce the best beam-smoothing effect to the laser beam on the last grating. When considering the diffraction loss of only two gratings, the total compression efficiency of the SSGP compressor is even larger than that of a four-grating main compressor. Furthermore, the wavefront aberration induced by the SSGP compressor can be better compensated by using deformable mirrors; however, it is difficult or complicated to be well compensated in a four-grating compressor. Approximately 50–100 PW laser pulses can be obtained using this SSGP-based multistage-smoothing MPC with a single laser beam.
    $$ \begin{align}\varPhi \left(\omega \right)=\omega {L}_0\left[1+\cos \left({\theta}_\mathrm{r}-{\theta}_\mathrm{i}\right)\right]\sec \left({\theta}_\mathrm{r}\right)/c,\end{align}$$ ((1))

    View in Article

    $$\begin{align}{\varPhi}_2=-8\pi 2{cL}_\mathrm{g}/\left[{\omega_0}^3{d}^2{\cos}^2\left({\theta}_{\mathrm{r}0}\right)\right],\end{align}$$ ((2))

    View in Article

    $$\begin{align}D={L}_0\left[\tan \left({\theta}_\mathrm{s}\right)-\tan \left({\theta}_\mathrm{l}\right)\right]\;\cos \left({\theta}_\mathrm{i}\right),\end{align}$$ ((3))

    View in Article

    Shuman Du, Xiong Shen, Wenhai Liang, Peng Wang, Jun Liu, Ruxin Li. A 100-PW compressor based on single-pass single-grating pair[J]. High Power Laser Science and Engineering, 2023, 11(1): 010000e4
    Download Citation