• Matter and Radiation at Extremes
  • Vol. 7, Issue 3, 035902 (2022)
Y. Y. Chua), Z. Wang, J. M. Qi, Z. P. Xu, and Z. H. Li
Author Affiliations
  • Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.1063/5.0079074 Cite this Article
    Y. Y. Chu, Z. Wang, J. M. Qi, Z. P. Xu, Z. H. Li. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(3): 035902 Copy Citation Text show less
    References

    [1] M. K.Matzen. Z pinches as intense x-ray sources for high-energy density physics applications. Phys. Plasmas, 4, 1519(1997).

    [2] M. G.Haines. A review of the dense Z-pinch. Plasma Phys. Controlled Fusion, 53, 093001(2011).

    [3] T. W. L.Sanford et al. Z-pinch-generated X rays demonstrate potential for indirect-drive ICF experiments. Phys. Rev. Lett., 83, 5511(1999).

    [4] C. L.Ruiz et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums. Phys. Rev. Lett., 93, 015001(2004).

    [5] E. V.Grabovski et al(2013).

    [6] W. A.Stygar et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments. Phys. Rev. Spec. Top.–Accel. Beams, 18, 110401(2015).

    [7] N. B.Meezan et al. Indirect drive ignition at the National Ignition Facility. Plasma Phys. Controlled Fusion, 59, 014021(2017).

    [8] R.Betti et al. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435(2016).

    [9] O. A.Hurricane et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2016).

    [10] T. A.Mehlhorn et al. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies. Plasma Phys. Controlled Fusion, 45, A325(2003).

    [11] C.Mao et al. Analytical physical models for cryogenic double-shell capsule design driven by Z-pinch dynamic Hohlraum. Phys. Plasmas, 28, 092706(2021).

    [12] J.Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).

    [13] J. D.Lindl. Inertial Confinement Fusion(1998).

    [14] E. M.Campbell et al. Nova experiments facility (invited). Rev. Sci. Instrum., 57, 2101(1986).

    [15] T. R.Boehly et al. Initial performance results of the OMEGA laser system. Opt. Commun., 133, 495(1997).

    [16] W. S.Varnum et al. Progress toward ignition with noncryogenic double-shell capsules. Phys. Rev. Lett., 84, 5153(2000).

    [17] P.Amendt et al. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis. Phys. Plasmas, 9, 2221(2002).

    [18] P.Amendt et al. An indirect-drive non-cryogenic double-shell path to 1ω Nd-laser hybrid inertial fusion–fission energy. Nucl. Fusion, 50, 105006(2010).

    [19] D. S.Montgomery et al. Design considerations for indirectly driven double shell capsules. Phys. Plasmas, 25, 092706(2018).

    [20] D. C.Wilson et al. Single and double shell ignition targets for the National Ignition Facility at 527 nm. Phys. Plasmas, 28, 052704(2021).

    [21] T. J.Nash et al. High-temperature dynamic hohlraums on the pulsed power driver Z. Phys. Plasmas, 6, 2023(1999).

    [22] R.Ramis et al. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations. Comput. Phys. Commun., 203, 226(2016).

    [23] R. M.More et al. A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids, 31, 3059(1988).

    [24] G. D.Tsakiris et al. An approximate method for calculating Planck and Rosseland mean opacities in hot, dense plasmas. J. Quant. Spectrosc. Radiat. Transfer, 38, 353(1987).

    [25] S. A.Slutz et al. Dynamic hohlraum driven inertial fusion capsules. Phys. Plasmas, 10, 1875(2003).

    [26] S.Atzeni, J.Meyer-ter-Vehn. The Physics of Inertial Fusion(2004).

    [27] J.Lindl et al. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 21, 020501(2014).

    [28] R.Ramis et al. MULTI2D—A computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Commun., 180, 977(2009).

    [29] F.Wu et al. A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations. J. Comput. Phys., 357, 206(2018).

    [30] F.Wu et al. Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum. Matter Radiat. Extremes, 3, 248(2018).

    [31] T. R.Dittrich et al. Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility. Phys. Rev. Lett., 112, 055002(2014).

    [32] D. T.Casey et al. Improved performance of high areal density indirect drive implosions at the National Ignition Facility using a four-shock adiabat shaped drive. Phys. Rev. Lett., 115, 105001(2015).

    [33] L. F.Wang et al. A scheme for reducing deceleration-phase Rayleigh–Taylor growth in inertial confinement fusion implosions. Phys. Plasmas, 23, 052713(2016).

    [34] D. E.Hinkel et al. Development of improved radiation drive environment for high foot implosions at the National Ignition Facility. Phys. Rev. Lett., 117, 225002(2016).

    [35] D. J.Stark et al. Detrimental effects and mitigation of the joint feature in double shell implosion simulations. Phys. Plasmas, 28, 052703(2021).

    Y. Y. Chu, Z. Wang, J. M. Qi, Z. P. Xu, Z. H. Li. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(3): 035902
    Download Citation