• Matter and Radiation at Extremes
  • Vol. 7, Issue 3, 035902 (2022)
Y. Y. Chua), Z. Wang, J. M. Qi, Z. P. Xu, and Z. H. Li
Author Affiliations
  • Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.1063/5.0079074 Cite this Article
    Y. Y. Chu, Z. Wang, J. M. Qi, Z. P. Xu, Z. H. Li. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(3): 035902 Copy Citation Text show less

    Abstract

    A Z-pinch dynamic hohlraum can create the high-temperature radiation field required by indirect-drive inertial confinement fusion. A dynamic hohlraum with peak radiation temperature over 300 eV can be obtained with a >50 MA Z-pinch driver according to the scaling law of dynamic hohlraum radiation temperature vs drive current. Based on a uniform 300 eV radiation temperature profile with a width of 10 ns, three double-shell capsules with radii of 2, 2.5, and 3 mm are proposed, and the corresponding fusion yields from a one-dimensional calculation are 28.8, 56.1, and 101.6 MJ. The implosion dynamics of the 2.5 mm-radius capsule is investigated in detail. At ignition, the areal density of the fuel is about 0.53 g/cm2, the fuel pressure is about 80 Gbar, and the central ion temperature is about 4.5 keV, according to the one-dimensional simulation. A two-dimensional simulation indicates that the double-shell capsule can implode nearly spherically when driven by the radiation field of a Z-pinch dynamic hohlraum. The sensitivities of the fusion performance to the radiation temperature profiles and to deviations in the capsule parameter are investigated through one-dimensional simulation, and it is found that the capsule fusion yields are rather stable in a quite large parameter space. A one-dimensional simulation of a capsule embedded in 50 mg/cm3 CH foam indicates that the capsule performance does not change greatly in the mimicked environment of a Z-pinch dynamic hohlraum. The double-shell capsules designed here are also applicable to laser indirect-drive inertial fusion, if a laser facility can produce a uniform 300 eV radiation field and sustain it for about 10 ns.
    Tr(t)=300exp(t20)236.07,

    View in Article

    dEdt=PdepPmPrPePi,

    View in Article

    Tr(t)=(300Tf)exp(t20)236.07+Tf,

    View in Article

    Y. Y. Chu, Z. Wang, J. M. Qi, Z. P. Xu, Z. H. Li. Numerical performance assessment of double-shell targets for Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2022, 7(3): 035902
    Download Citation