• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 4, 420 (2021)
Bo ZHANG, Xiuwen GUO, Minghuan CUI, Mingze SUN, Gaoqiang LI, Jing ZHOU, and Chaochao QIN
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.04.003 Cite this Article
    ZHANG Bo, GUO Xiuwen, CUI Minghuan, SUN Mingze, LI Gaoqiang, ZHOU Jing, QIN Chaochao. Application of variable temperature fluorescence test system with adjustable pump intensity in quasi-2D perovskite materials[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 420 Copy Citation Text show less
    References

    [1] Li Z C, Chen Z M, Yang Y C, et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%[J]. Nature Communications, 2019, 10: 1027.

    [2] Jiang Y Z, Qin C C, Cui M H, et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 2019, 10: 1868.

    [3] Yang X L, Zhang X W, Deng J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation[J]. Nature Communications, 2018, 9: 570.

    [4] Qin C J, Matsushima T, Potscavage W J, et al. Triplet management for efficient perovskite light-emitting diodes[J]. Nature Photonics, 2020, 14(2): 70-75.

    [5] Wang N N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nature Photonics, 2016, 10(11): 699-704.

    [6] Liu Y, Cui J Y, Du K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures[J]. Nature Photonics, 2019, 13(11): 760-764.

    [7] Shang Q Y, Wang Y N, Zhong Y G, et al. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission[J]. The Journal of Physical Chemistry Letters, 2017, 8(18): 4431-4438.

    [8] Yuan M J, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes[J]. Nature Nanotechnology, 2016, 11(10): 872-877.

    [9] Leng K, Abdelwahab I, Verzhbitskiy I, et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation[J]. Nature Materials, 2018, 17(10): 908-914.

    [10] Song J Z, Xu L M, Li J H, et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Advanced Materials, 2016, 28(24): 4861-4869.

    [11] Liu J X, Leng J, Wu K F, et al. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films[J]. Journal of the American Chemical Society, 2017, 139(4): 1432-1435.

    [12] Stoumpos C C, Cao D H, Clark D J, et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors[J]. Chemistry of Materials, 2016, 28(8): 2852-2867.

    [13] Deng S B, Shi E Z, Yuan L, et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites[J]. Nature Communications, 2020, 11(1): 664.

    [14] Xing G C, Wu B, Wu X Y, et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence[J]. Nature Communications, 2017, 8: 14558.

    [15] Liang Y, Shang Q Y, Wei Q, et al. Lasing from mechanically exfoliated 2D homologous ruddlesden-popper perovskite engineered by inorganic layer thickness[J]. Advanced Materials, 2019, 31(39): 1903030.

    [16] Zhang Y R, Wang L J, Liu P, et al. Measurement and extrapolation modeling of PAH laser-induced fluorescence spectra at elevated temperatures[J]. Applied Physics B, 2018, 125(1): 1-12.

    [17] Hu Y, Moran B M, Woehl J C. Development of a confocal scanning microscope for fluorescence imaging and spectroscopy at variable temperatures[J]. Review of Scientific Instruments, 2019, 90(4): 043702.

    [18] Bi X, Liu B, McDonald L, et al. Excited-state intramolecular proton transfer (ESIPT) of fluorescent flavonoid dyes: A close look by low temperature fluorescence[J]. The Journal of Physical Chemistry B, 2017, 121(19): 4981-4986.

    [19] Ariese F, van Assema S, Gooijer C, et al. Comparison of laurentian fulvic acid luminescence with that of the hydroquinone/quinone model system: Evidence from low temperature fluorescence studies and epr spectroscopy[J]. Aquatic Sciences, 2004, 66(1): 86-94.

    [20] Liu J, Liu W Q, Zhao N J, et al. Phytoplankton chlorophyll fluorescence characteristics excited by various light qualities and intensities[J]. Acta Optica Sinica, 2013, 33(9): 930001.

    [21] Pan H, Zhao X J, Gong X, et al. Atomic-scale tailoring of organic cation of layered ruddlesden-popper perovskite compounds[J]. Journal of Physical Chemistry Letters, 2019, 10(8): 1813-1819.

    [22] Ban M Y, Zou Y T, Rivett J P H, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring[J]. Nature Communications, 2018, 9(2): 3892.

    [23] Thirumal K, Chong W K, Xie W, et al. Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton-phonon coupling to the organic framework[J]. Chemistry of Materials, 2017, 29(9): 3947-3953.

    [24] Lorke M, Nielsen T R, Seebeck J, et al. Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems[J]. Physical Review B, 2006, 73(8): 085324.

    [25] Zhang H H, Wu Y S, Liao Q, et al. A two-dimensional ruddlesden-popper perovskite nanowire laser array based on ultrafast light-harvesting quantum wells[J]. Angewandte Chemie-International Edition, 2018, 130(26): 7874-7878.

    [26] Handa T, Aharen T, Wakamiya A, et al. Radiative recombination and electron-phonon coupling in lead-free CH3NH3SnI3 perovskite thin films[J]. Physical Review Materials, 2018, 2(7): 075402.

    [27] Gauthron K, Lauret J S, Doyennette L, et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite[J]. Optics Express, 2010, 18(6): 5912-5919.

    [28] Gélvez-Rueda M C, Cao D H, Patwardhan S, et al. Effect of cation rotation on charge dynamics in hybrid lead halide perovskites[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16577-16585.

    [29] Gong X W Voznyy O, Jain A, et al. Electron-phonon interaction in efficient perovskite blue emitters[J]. Nature Materials, 2018, 17(6): 550-556.

    [30] Smith M D, Karunadasa H I, et al. White-light emission from layered halide perovskites[J]. Accounts of Chemical Research, 2018, 51(3): 619-627.

    [31] Wu K W, Bera A, Ma C, et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films[J]. Physical Chemistry Chemical Physics, 2014, 16(41): 22476-22481.

    [32] Milot R L, Sutton R J, Eperon G E, et al. Charge-carrier dynamics in 2D hybrid metal-halide perovskites[J]. Nano Letters, 2016, 16(11): 7001-7007.

    [33] Mcguire J A, Joo J, Pietryga J M, et al. New aspects of carrier multiplication in semiconductor nanocrystals[J]. Accounts of Chemical Research, 2008, 41(12): 1810-1819.

    [34] Li M L, Gao Q G, Liu P, et al. Amplified spontaneous emission based on 2D ruddlesden-popper perovskites[J]. Advanced Functional Materials, 2018, 28(17): 1707006.

    [35] Protesescu L, Yakunin S, Bodnarchuk M I, et al. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence[J]. Journal of the American Chemical Society, 2016, 138(43): 14202-14205.

    [36] Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6: 8056.

    [37] Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13(5): 476-480.

    [38] Sutherland B R, Hoogland S, Adachi M M, et al. Conformal organohalide perovskites enable lasing on spherical resonators[J]. ACS Nano, 2014, 8(10): 10947-10952.

    ZHANG Bo, GUO Xiuwen, CUI Minghuan, SUN Mingze, LI Gaoqiang, ZHOU Jing, QIN Chaochao. Application of variable temperature fluorescence test system with adjustable pump intensity in quasi-2D perovskite materials[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 420
    Download Citation