• Laser & Optoelectronics Progress
  • Vol. 60, Issue 11, 1106024 (2023)
Xiaoli Chen1、2, Sibin Lu1, Zhanwei Yao1, Min Jiang1, Shaokang Li1, Runbing Li1、3、4、*, Jin Wang1、3、4, and Mingsheng Zhan1、3、4
Author Affiliations
  • 1Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hefei National Laboratory, Hefei 230094, Anhui, China
  • 4Wuhan Institute of Quantum Technology, Wuhan 430206, Hubei, China
  • show less
    DOI: 10.3788/LOP230846 Cite this Article Set citation alerts
    Xiaoli Chen, Sibin Lu, Zhanwei Yao, Min Jiang, Shaokang Li, Runbing Li, Jin Wang, Mingsheng Zhan. Large-Momentum-Transfer Atom Interferometer Based on Top-Hat Composite Light Pulse[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106024 Copy Citation Text show less
    References

    [1] Kasevich M, Chu S. Atomic interferometry using stimulated Raman transitions[J]. Physical Review Letters, 67, 181-184(1991).

    [2] Dutta I, Savoie D, Fang B et al. Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability[J]. Physical Review Letters, 116, 183003(2016).

    [3] Zou P F, Yan S H, Lin C B. Absolute rotation measurement for space-domain Raman pulses cold atom gyroscope[J]. Laser & Optoelectronics Progress, 51, 051201(2014).

    [4] Yao Z W, Chen H H, Lu S B et al. Self-alignment of a large-area dual-atom-interferometer gyroscope using parameter-decoupled phase-seeking calibrations[J]. Physical Review A, 103, 023319(2021).

    [5] Lamporesi G, Bertoldi A, Cacciapuoti L et al. Determination of the Newtonian gravitational constant using atom interferometry[J]. Physical Review Letters, 100, 050801(2008).

    [6] Rosi G, Sorrentino F, Cacciapuoti L et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 510, 518-521(2014).

    [7] Wang Z Y, Wu Z J, Lin Q. The relation between the atom interference fringe and the measurement precision of gravity[J]. Acta Optica Sinica, 29, 3541-3544(2009).

    [8] Zhao Y, Wang S K, Zhuang W et al. Design of laser system for absolute gravimeter based on 87Rb atom interferometer[J]. Laser & Optoelectronics Progress, 52, 091406(2015).

    [9] Parker R H, Yu C H, Zhong W C et al. Measurement of the fine-structure constant as a test of the Standard Model[J]. Science, 360, 191-195(2018).

    [10] Bouchendira R, Cladé P, Guellati-Khélifa S et al. New determination of the fine structure constant and test of the quantum electrodynamics[J]. Physical Review Letters, 106, 080801(2011).

    [11] Zhou L, Long S T, Tang B A et al. Test of equivalence principle at 10-8 level by a dual-species double-diffraction Raman atom interferometer[J]. Physical Review Letters, 115, 013004(2015).

    [12] Wang J, Zhan M S. Test of weak equivalence principle of microscopic particles based on atom interferometers[J]. Acta Physica Sinica, 67, 160402(2018).

    [13] Overstreet C, Asenbaum P, Kovachy T et al. Effective inertial frame in an atom interferometric test of the equivalence principle[J]. Physical Review Letters, 120, 183604(2018).

    [14] Dimopoulos S, Graham P W, Hogan J M et al. Testing general relativity with atom interferometry[J]. Physical Review Letters, 98, 111102(2007).

    [15] Chaibi W, Geiger R, Canuel B et al. Low frequency gravitational wave detection with ground-based atom interferometer arrays[J]. Physical Review D, 93, 021101(2016).

    [16] Junca J, Bertoldi A, Sabulsky D O et al. Characterizing Earth gravity field fluctuations with the MIGA antenna for future gravitational wave detectors[J]. Physical Review D, 99, 104026(2019).

    [17] McGuirk J M, Snadden M J, Kasevich M A. Large area light-pulse atom interferometry[J]. Physical Review Letters, 85, 4498-4501(2000).

    [18] Müller H, Chiow S W, Long Q A et al. Atom interferometry with up to 24-photon-momentum-transfer beam splitters[J]. Physical Review Letters, 100, 180405(2008).

    [19] Kovachy T, Asenbaum P, Overstreet C et al. Quantum superposition at the half-metre scale[J]. Nature, 528, 530-533(2015).

    [20] Chiow S W, Kovachy T, Chien H C et al. 102 ℏk large area atom interferometers[J]. Physical Review Letters, 107, 130403(2011).

    [21] Cladé P, Guellati-Khélifa S, Nez F et al. Large momentum beam splitter using Bloch oscillations[J]. Physical Review Letters, 102, 240402(2009).

    [22] McDonald G D, Kuhn C C N, Bennetts S et al. 80 ℏk momentum separation with Bloch oscillations in an optically guided atom interferometer[J]. Physical Review A, 88, 053620(2013).

    [23] Graham P W, Hogan J M, Kasevich M A et al. New method for gravitational wave detection with atomic sensors[J]. Physical Review Letters, 110, 171102(2013).

    [24] Rudolph J, Wilkason T, Nantel M et al. Large momentum transfer clock atom interferometry on the 689 nm intercombination line of strontium[J]. Physical Review Letters, 124, 083604(2020).

    [25] Kotru K, Brown J M, Butts D L et al. Robust Ramsey sequences with Raman adiabatic rapid passage[J]. Physical Review A, 90, 053611(2014).

    [26] Kotru K, Butts D L, Kinast J M et al. Large-area atom interferometry with frequency-swept Raman adiabatic passage[J]. Physical Review Letters, 115, 103001(2015).

    [27] Du Y X, Liang Z T, Li Y C et al. Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms[J]. Nature Communications, 7, 12479(2016).

    [28] Guéry-Odelin D, Ruschhaupt A, Kiely A et al. Shortcuts to adiabaticity: concepts, methods, and applications[J]. Reviews of Modern Physics, 91, 045001(2019).

    [29] Giese E, Roura A, Tackmann G et al. Double Bragg diffraction: a tool for atom optics[J]. Physical Review A, 88, 053608(2013).

    [30] Gauguet A, Canuel B, Lévèque T et al. Characterization and limits of a cold-atom Sagnac interferometer[J]. Physical Review A, 80, 063604(2009).

    [31] Mazzoni T, Zhang X, del Aguila R et al. Large-momentum-transfer Bragg interferometer with strontium atoms[J]. Physical Review A, 92, 053619(2015).

    [32] Lu S B, Yao Z W, Li R B et al. Competition effects of multiple quantum paths in an atom interferometer[J]. Optics Communications, 429, 158-162(2018).

    [33] Pagel Z, Zhong W C, Parker R H et al. Symmetric Bloch oscillations of matter waves[J]. Physical Review A, 102, 053312(2020).

    [34] Plotkin-Swing B, Gochnauer D, McAlpine K E et al. Three-path atom interferometry with large momentum separation[J]. Physical Review Letters, 121, 133201(2018).

    [35] Berg P, Abend S, Tackmann G et al. Composite-light-pulse technique for high-precision atom interferometry[J]. Physical Review Letters, 114, 063002(2015).

    [36] Hosten O, Engelsen N J, Krishnakumar R et al. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms[J]. Nature, 529, 505-508(2016).

    [37] Cheinet P, Canuel B, Dos Santos F P et al. Measurement of the sensitivity function in a time-domain atomic interferometer[J]. IEEE Transactions on Instrumentation and Measurement, 57, 1141-1148(2008).

    Xiaoli Chen, Sibin Lu, Zhanwei Yao, Min Jiang, Shaokang Li, Runbing Li, Jin Wang, Mingsheng Zhan. Large-Momentum-Transfer Atom Interferometer Based on Top-Hat Composite Light Pulse[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106024
    Download Citation