• High Power Laser Science and Engineering
  • Vol. 10, Issue 2, 02000e15 (2022)
Paolo Tomassini1、2、*, Francesco Massimo3, Luca Labate1、4, and Leonida A. Gizzi1、4
Author Affiliations
  • 1Intense Laser Irradiation Laboratory, INO-CNR, Pisa, Italy
  • 2ELI-NP, Magurele, Ilfov, Romania
  • 3Maison de la Simulation, CEA, USR 3441, Gif-sur-Yvette, France
  • 4INFN, Sect. of Pisa, Pisa, Italy
  • show less
    DOI: 10.1017/hpl.2021.56 Cite this Article Set citation alerts
    Paolo Tomassini, Francesco Massimo, Luca Labate, Leonida A. Gizzi. Accurate electron beam phase-space theory for ionization-injection schemes driven by laser pulses[J]. High Power Laser Science and Engineering, 2022, 10(2): 02000e15 Copy Citation Text show less

    Abstract

    After the introduction of the ionization-injection scheme in laser wake field acceleration and of related high-quality electron beam generation methods, such as two-color and resonant multi-pulse ionization injection (ReMPI), the theory of thermal emittance has been used to predict the beam normalized emittance obtainable with those schemes. We recast and extend such a theory, including both higher order terms in the polynomial laser field expansion and non-polynomial corrections due to the onset of saturation effects on a single cycle. Also, a very accurate model for predicting the cycle-averaged distribution of the extracted electrons, including saturation and multi-process events, is proposed and tested. We show that our theory is very accurate for the selected processes of ${\mathrm{Kr}}^{8^{+}\to {10}^{+}}$ and ${\mathrm{Ar}}^{8^{+}\to {10}^{+}}$ , resulting in a maximum error below 1%, even in a deep-saturation regime. The accurate prediction of the beam phase-space can be implemented, for example, in laser-envelope or hybrid particle-in-cell (PIC)/fluid codes, to correctly mimic the cycle-averaged momentum distribution without the need for resolving the intra-cycle dynamics. We introduce further spatial averaging, obtaining expressions for the whole-beam emittance fitting with simulations in a saturated regime, too. Finally, a PIC simulation for a laser wakefield acceleration injector in the ReMPI configuration is discussed.
    $$\begin{align}{\overline{u}}_{{x}}=-{a}_{0,\mathrm{e}}\sin {\xi}_{\mathrm{e}},\ {\overline{u}}_{{y}}=0,\ {\overline{u}}_{{z}}=\frac{1}{2}{a}_{0,\mathrm{e}}^2\left({\sin}^2{\xi}_{\mathrm{e}}+\frac{1}{2}\right),\end{align}$$ ((1))

    View in Article

    $$\begin{align}{u}_{{x}}={\overline{u}}_{{x}},\ {u}_{{y}}={\overline{u}}_{{y}},\ {u}_{{z}}={\overline{u}}_{{z}}-\frac{1}{4}{a}_{0,\mathrm{e}}^2\kern0.1em,\end{align}$$ ((2))

    View in Article

    $$\begin{align}\Delta ={\left(\frac{3{E}_0}{2{E}_{\mathrm{a}}}\right)}^{1/2}\cdot {\left(\frac{U_{\mathrm{H}}}{U_{\mathrm{I}}}\right)}^{3/4}.\end{align}$$ ((3))

    View in Article

    $$\begin{align}\displaystyle\frac{\textrm{d}n_{\mathrm{e}}}{\textrm{d}t} &= W\cdot \left({n}_{0,\mathrm{i}}-{n}_{\mathrm{e}}\right),\nonumber\\ {}W&=C{\left({\rho}_0|\cos \xi |\right)}^{\mu}\exp \left(-\displaystyle\frac{1}{\rho_0\mid \cos \xi \mid}\right),\end{align}$$ ((4))

    View in Article

    $$\begin{align}\mu =-2{n}^{\ast }+\mid m\mid +1,\end{align}$$ ((5))

    View in Article

    $$\begin{align}\left\langle W\right\rangle &\equiv \displaystyle\frac{1}{\pi }{\displaystyle\int}_{-\pi /2}^{\pi /2}W\left({\rho}_0,\xi \right) \textrm{d}\xi \nonumber\\ & \simeq C\sqrt{\displaystyle\frac{2}{\pi }}\left(1-\displaystyle\frac{\mu +5/4}{2}{\rho}_0\right){\rho}_0^{\mu +1/2}{e}^{-1/{\rho}_0}.\end{align}$$ ((6))

    View in Article

    $$\begin{align}\overline{\Gamma}(L)={\int}_0^{{L}} \textrm{d}z\left\langle W\right\rangle /c.\end{align}$$ ((7))

    View in Article

    $$\begin{align}{\overline{k}}_{\mathrm{ADK}}=\sqrt{\frac{2}{\pi }}C\left(|m|\right)/c.\end{align}$$ ((8))

    View in Article

    $$\begin{align}\left({\overline{k}}_{\mathrm{ADK}}L\right){\rho}_0^{\mu +1/2}{e}^{-1/{\rho}_0}=1.\end{align}$$ ((9))

    View in Article

    $$\begin{align}W\left(\xi \right)&={W}_0\cdot {\left(\cos \xi \right)}^{\mu}\exp \left[\displaystyle\frac{1}{\rho_0}\left(\displaystyle\frac{1}{\cos \xi }-1\right)\right]\nonumber\\ &\simeq {W}_0\exp \left(-\displaystyle\frac{\xi^2}{2{\rho}_0}\right)\left(1-\displaystyle\frac{\mu }{2}{\xi}^2-\displaystyle\frac{5}{24{\rho}_0}{\xi}^4\right)\nonumber\\ &\simeq {W}_0\exp \left[-\displaystyle\frac{\xi^2}{2{\sigma}_{\psi}^2}\left(1+\displaystyle\frac{5}{12}{\xi}^2\right)\right],\end{align}$$ ((10))

    View in Article

    $$\begin{align}{\sigma}_{\xi, 0}^2\equiv \left\langle {\xi}^2\right\rangle ={\rho}_0\left[1-\left(\mu +5/2\right){\rho}_0\right].\end{align}$$ ((11))

    View in Article

    $$\begin{align}{\sigma}_{s,0}^2\equiv \left\langle {\sin}^2\xi \right\rangle ={\rho}_0\left(1+{s}_\textrm{I}\cdot {\rho}_0+{s}_{\textrm{II}}\cdot {\rho}_0^2\right),\end{align}$$ ((12))

    View in Article

    $$\begin{align}\Gamma \left(\xi \right)&\equiv \displaystyle\frac{1}{k_{0,x}}{\displaystyle\int}_{-\pi /2}^{\xi } \textrm{d}x W(x)\nonumber\\ &=\displaystyle\frac{k_{\textrm{ADK}}}{k_0}{\rho}_0^{\mu }{\displaystyle\int}_{-\pi /2}^{\xi } \textrm{d}x{\left(\cos x\right)}^{\mu }{e}^{-\displaystyle\frac{1}{\rho_0\cos x}}\nonumber\\ &\simeq {\nu}_{\mathrm{s}}\left({\rho}_0\right)\mathcal{G}\left(\displaystyle\frac{\xi }{\sqrt{2{\rho}_0}}\right),\end{align}$$ ((13))

    View in Article

    $$\begin{align}\mathcal{G}(x)\equiv \frac{1}{2}\left[1+\operatorname{erf}(x)\right]+\frac{\rho_0}{24\sqrt{\pi }}x\left(15+12\mu +10{x}^2\right){e}^{-{x}^2}\end{align}$$ ((14))

    View in Article

    $$\begin{align}{\nu}_{\mathrm{s}}\equiv \sqrt{2\pi}\frac{{k}_{\mathrm{ADK}}}{k_0}\left(1-\frac{\mu +5/4}{2}{\rho}_0\right){\rho}_0^{\mu +1/2}{e}^{-\frac{1}{\rho_0}}.\end{align}$$ ((15))

    View in Article

    $$\begin{align}{\mathcal{G}}_0(x)\equiv \frac{1}{2}\left[1+\operatorname{erf}(x)\right]\end{align}$$ ((16))

    View in Article

    $$\begin{align}\frac{1}{n_{0,\mathrm{i}}}\frac{{{\rm d} n}_{\rm e}}{{\rm d}\xi}=-\frac{\partial }{\partial \xi }{e}^{-\Gamma \left(\xi \right)},\end{align}$$ ((17))

    View in Article

    $$\begin{align}\frac{1}{n_{0,\mathrm{i}}}\frac{{{\rm d} n}_{\rm e}}{{\rm d}\xi}={W}_0{e}^{-\frac{\xi^2}{2{\rho}_0}}\left(1-\frac{\mu }{2}{\xi}^2-\frac{5}{24{\rho}_0}{\xi}^4\right){e}^{-{\nu}_{\mathrm{s}}G\left(\frac{\xi }{\sqrt{2{\rho}_0}}\right)}\end{align}$$ ((18))

    View in Article

    $$\begin{align}P(x)\sim \left[1-{\rho}_0\left(\mu {x}^2+\frac{5}{6}{x}^4\right)\right]{e}^{-{{x}}^2-{\nu}_{\mathrm{s}}G(x)},\end{align}$$ ((19))

    View in Article

    $$\begin{align}\Xi \left(n,{\rho}_0\right)=\frac{\int_{-{x}_{\rm max}}^{x_{\rm max}} {\rm d}x\kern0.1em {x}^nP(x)}{\int_{-{x}_{\rm max}}^{x_{\rm max}} {\rm d}x P(x)}.\end{align}$$ ((20))

    View in Article

    $$\begin{align}{\left\langle {\xi}_{\rm e}\right\rangle}_{\rm single}\simeq \pm \sqrt{2{\rho}_0}\times \Xi \left(1,{\rho}_0\right),\kern0.1em\end{align}$$ ((21))

    View in Article

    $$\begin{align}{\left\langle {\xi}_{\rm e}^2\right\rangle}_{\rm single}\simeq 2{\rho}_0\times \Xi \left(2,{\rho}_0\right).\end{align}$$ ((22))

    View in Article

    $$\begin{align}{\left\langle {\xi}_{\rm e}\right\rangle}_{\rm cycle}\simeq \sqrt{2{\rho}_0}\left[\Xi \left(1,{\rho}_0\right)-\frac{1}{3}{\rho}_0\Xi \big(3,{\rho}_0\big)\right]\left(\frac{1-{e}^{-{\nu}_{\mathrm{s}}}}{1+{e}^{-{\nu}_{\mathrm{s}}}}\right),\end{align}$$ ((23))

    View in Article

    $$\begin{align}{\sigma}_{\rm s}^2\simeq {\sigma}_{\rm s,0}^2\kern0.1em S\left({\nu}_{\mathrm{s}}\right)\end{align}$$ ((24))

    View in Article

    $$\begin{align}\begin{array}{r@{\ }c@{\ }l}S\left({\nu}_{\mathrm{s}}\right)&\equiv &2\Xi \left(2,{\rho}_0\right)-\displaystyle\frac{4}{3}{\rho}_0\Xi \left(4,{\rho}_0\right)+\\[5pt] && -2{\left\{\left[\Xi \left(1,{\rho}_0\right)-\displaystyle\frac{1}{3}{\rho}_0\Xi \big(3,{\rho}_0\big)\right]\displaystyle\frac{1-{e}^{-{\nu}_{\mathrm{s}}}}{1+{e}^{-{\nu}_{\mathrm{s}}}}\right\}}^2.\end{array}\end{align}$$ ((25))

    View in Article

    $$\begin{align}\left\{\begin{array}{l}\displaystyle\frac{{{\rm d}n}^{(0)}}{{\rm d}\xi}=-{n}^{(0)}{\nu}_{\mathrm{s}}^{(0)}{\mathcal{G}}^{(0)}\\\\[-4pt] {}\displaystyle\frac{{{\rm d}n}^{(1)}}{{\rm d}\xi}=-{n}^{(1)}{\nu}_{\mathrm{s}}^{(1)}{\mathcal{G}}^{(1)}+{n}^{(0)}{\nu}_{\mathrm{s}}^{(0)}{\mathcal{G}}^{(0)}\end{array}\right.,\end{align}$$ ((26))

    View in Article

    $$\begin{align}{N}_{\rm e}^{(0)}&={n}_{\rm i}^{(0)}\left(1-{e}^{-{\nu}_{\mathrm{s}}^{(0)}}\right) \nonumber \\ {}{N}_{\rm e}^{(1)}&={n}_{\rm i}^{(1)}\left(1-{e}^{-{\nu}_{\mathrm{s}}^{(1)}}\right)+ \nonumber \\ & \quad +{n}_{\rm i}^{(0)}\left(1-{e}^{-{\nu}_{\mathrm{s}}^{(0)}}-{e}^{-{\nu}_{\mathrm{s}}^{(1)}}{\mathrm{\mathcal{M}}}_{01}\right),\end{align}$$ ((27))

    View in Article

    $$\begin{align}{\mathrm{\mathcal{M}}}_{01}\left({\rho}_0;\xi \right)\equiv {W}_0^{(0)}{\int}_{-\pi /2}^{\xi }{{\rm d}te}^{\nu_{\mathrm{s}}^{(1)}{{G}}^{(1)}\left({t}\right)}{P}^{(0)}(t).\end{align}$$ ((28))

    View in Article

    $$\begin{align}\frac{{{\rm d} n}_{\rm e}^{(1)}}{{\rm d}\xi}={W}_0^{(1)}{P}^{(1)}\left[{n}_{\rm i}^{(1)}+{n}_{\rm i}^{(0)}{\mathrm{\mathcal{M}}}_{01}\left({\rho}_0;\xi \right)\right]\end{align}$$ ((29))

    View in Article

    $$\begin{align}{\int}_{-\pi /2}^{\xi }{{\rm d}te}^{\nu_{\mathrm{s}}^{(1)}{{G}}^{(1)}\left({t}\right)}{P}^{(0)}(t)\simeq {e}^{\nu_{\mathrm{s}}^{(1)}{{G}}^{(1)}\left(\xi \right)}\left(1-{e}^{\nu_{\mathrm{s}}^{(0)}{{G}}^{(0)}\left(\xi \right)}\right).\end{align}$$ ((30))

    View in Article

    $$\begin{align}\mathcal{G}\left(m,n\right)&\equiv \left\langle {e}^{-{{mr}}^2-{n}{\left({z}-{ct}\right)}^2}\right\rangle \nonumber \\ &=\displaystyle\frac{\displaystyle\int {\rm d}^3{xe}^{-{{mr}}^2-{n}{\left({z}-{ct}\right)}^2}{{\rm d}n}_{\rm e}/ {\rm d}t\left(\overrightarrow{x}\right)}{\displaystyle\int {\rm d}^3{x{\rm d}n}_{\rm e}/ {\rm d}t\left(\overrightarrow{x}\right)},\end{align}$$ ((31))

    View in Article

    $$\begin{align}\begin{split}I\left(k,{\rho}_0\right)&\equiv {\displaystyle\int}_0^{\infty }{{\rm d}x}^2{e}^{\left[-\left(\mu +\displaystyle\frac{1}{2}+{k}\right){x}-\displaystyle\frac{1}{\rho_0}\left({{e}}^{{{x}}^2}-1\right)\right]}\\ & ={e}^{-\left(\mu +\displaystyle\frac{1}{2}+{k}\right)+\displaystyle\frac{1}{\rho_0}}{\Gamma}^{\rm up}\left[-\left(\mu +\displaystyle\frac{1}{2}+k\right);\displaystyle\frac{1}{\rho_0}\right],\end{split}\end{align}$$ ((32))

    View in Article

    $$\begin{align} \mathcal{G}\left(k,0\right)&\equiv \left\langle {e}^{-{{kr}}^2/{{w}}_0^2}\right\rangle \nonumber \\ & =\displaystyle\frac{I\left(k,{\rho}_0\right)-\left(\displaystyle\frac{\mu }{2}+\displaystyle\frac{5}{8}\right){\rho}_0I\left(k+1,{\rho}_0\right)}{I\left(0,{\rho}_0\right)-\left(\displaystyle\frac{\mu }{2}+\displaystyle\frac{5}{8}\right){\rho}_0I\left(1,{\rho}_0\right)} \nonumber \\ &\simeq 1-k{\rho}_0+k\left(\mu +\displaystyle\frac{5}{2}\right){\rho}_0^2+\mathcal{O}{\left({\rho}_0\right)}^3.\end{align}$$ ((33))

    View in Article

    $$\begin{align}\left\langle {e}^{-k{{x}}^2/{{w}}_0^2}\right\rangle =\left\langle {e}^{-{{ky}}^2/{{w}}_0^2}\right\rangle =\left\langle {e}^{-{k}{\left({z}-{ct}\right)}^2/{{L}}^2}\right\rangle,\end{align}$$ ((34))

    View in Article

    $$\begin{align}\mathcal{G}\left(0,k\right)&=\sqrt{\mathcal{G}\left(k,0\right)} \nonumber \\ &\simeq 1-\displaystyle\frac{1}{2}k{\rho}_0+\displaystyle\frac{1}{2}k\left[\left(\mu +\displaystyle\frac{1}{2}\right)+\displaystyle\frac{3}{4}k\right]{\rho}_0^2.\end{align}$$ ((35))

    View in Article

    $$\begin{align}\mathcal{G}\left(k,k\right)&\equiv \left\langle {e}^{-\mathrm{k}{\left(\mathrm{r}/{\mathrm{w}}_0\right)}^2-\mathrm{k}{\left(\mathrm{z}-\mathrm{ct}\right)}^2/\mathrm{L}}\right\rangle ={\left(\mathcal{G}\left(k,0\right)\right)}^{3/2} \nonumber \\ &\simeq 1-\displaystyle\frac{3}{2}k{\rho}_0+\displaystyle\frac{3}{2}k\left[\left(\mu +\displaystyle\frac{1}{2}\right)+\displaystyle\frac{5}{4}k\right]{\rho}_0^2.\end{align}$$ ((36))

    View in Article

    $$\begin{align}\left\langle {\sigma}_u^2\right\rangle &\equiv \frac{\displaystyle\int {\rm d}^3x{\sigma}_{u_x}^2\times {{\rm d}n}_{\rm e}/ {\rm d}t\left(\overrightarrow{x}\right)}{\displaystyle\int {\rm d}^3{x{\rm d}n}_{\rm e}/ {\rm d}t\left(\overrightarrow{x}\right)} \nonumber \\ &={a}_{\rm c}^2{\rho}_0^3\left[\mathcal{G}\left(3,3\right)+{s}_{\rm I}{\rho}_0\mathcal{G}(4,4)+{s}_{\rm II}{\rho}_0^2\mathcal{G}(5,5)\right].\end{align}$$ ((37))

    View in Article

    $$\begin{align} {\sigma}_{u_x, {\rm bunch},0}^2&\equiv {\left\langle {\sigma}_u^2\right\rangle}_{\rm bunch}\simeq {a}_0^2{\rho}_0 \nonumber \\ & \quad \times \big[1-\left(\mu +8\right){\rho}_0 \nonumber \\ & \quad +\left.\;\left({\mu}^2+19\mu + {131}/{2}\right){\rho}_0^2\right].\end{align}$$ ((38))

    View in Article

    $$\begin{align}\left\langle {r}^2\right\rangle =-{\partial}_m\mathcal{G}{\left(m,0\right)}_{m=0}.\end{align}$$ ((39))

    View in Article

    $$\begin{align}\left\langle {r}^2\right\rangle \simeq {w}_0^2{\rho}_0\left[1-\left(\mu +\frac{5}{2}\right){\rho}_0\right].\end{align}$$ ((40))

    View in Article

    $$\begin{align}{\sigma}_{x, {\rm bunch},0}^2 & \equiv {\left\langle {x}^2\right\rangle}_{\rm bunch}\simeq \frac{1}{2}{w}_0^2{\rho}_0 \nonumber \\ & \times \left[1-\left(\mu +3\right){\rho}_0+\displaystyle\frac{1}{2}\left(3\mu +\displaystyle\frac{33}{4}\right){\rho}_0^2\right].\end{align}$$ ((41))

    View in Article

    $$\begin{align} {\varepsilon}_{{\rm n},x}^2 &\equiv {\left\langle {x}^2\right\rangle}_{\rm beam}{\left\langle {u}_x^2\right\rangle}_{\rm beam}-{\left({\left\langle {xu}_x\right\rangle}_{\rm beam}\right)}^2 \nonumber \\ & =\displaystyle\frac{1}{2}{\left({a}_0\kern0.1em {w}_0\kern0.1em {\rho}_0\right)}^2{\mathrm{\mathcal{E}}}_{\rm n}\left({\rho}_0,{\mu}_0\right),\end{align}$$ ((42))

    View in Article

    $$\begin{align}{\mathrm{\mathcal{E}}}_{\rm n}\left({\rho}_0,\mu \right)\simeq 1-\left(\mu +11\right){\rho}_0+\left(2{\mu}^2+\frac{63}{2}\mu +\frac{749}{8}\right){\rho}_0^2.\end{align}$$ ((43))

    View in Article

    $$\begin{align} & \overline{\Gamma}\left(r,z- ct\right)={\displaystyle\int}_{-\infty}^{{z}-{ct}}\left\langle W\left(r,\zeta \right)/c\right\rangle {\rm d}\zeta \nonumber \\ & \simeq {\overline{\nu}}_{\rm s}{e}^{-\displaystyle\frac{{{r}}^2}{\rho_0{{w}}_{{r}}^2}}\times \displaystyle\frac{1}{2}\left[1+E\left(\displaystyle\frac{z- ct}{{\sqrt{\rho}}_0{w}_z}\right)\right],\end{align}$$ ((44))

    View in Article

    $$\begin{align}{\overline{\nu}}_{\rm s}=\sqrt{2}\left({k}_{\mathrm{ADK}}{w}_z\right){\rho}_0^{\mu +1}{e}^{-1/{\rho}_0}.\end{align}$$ ((45))

    View in Article

    $$\begin{align}{\left\langle {r}^2\right\rangle}_{\rm sat}&=\displaystyle\frac{\displaystyle\int_{-\infty}^{\infty } {\rm d}z{\displaystyle\int}_0^{\infty }{{\rm d}r}^2{r}^2\left\langle W\right\rangle {e}^{-\overline{\Gamma}}}{\displaystyle\int_{-\infty}^{\infty } {\rm d}z{\displaystyle\int}_0^{\infty }{{\rm d}r}^2\left\langle W\right\rangle {e}^{-\overline{\Gamma}}} \nonumber \\ &=\displaystyle\frac{\displaystyle\int_0^{\infty }{{\rm d}r}^2{r}^2\left(1-{e}^{-{\overline{\nu}}_{\mathrm{s}}{{e}}^{-{{r}}^2/{{w}}_{{r}}^2}}\right)}{\displaystyle\int_0^{\infty }{{\rm d}r}^2\left(1-{e}^{-{\overline{\nu}}_{\mathrm{s}}{{e}}^{-{{r}}^2/{{w}}_{{r}}^2}}\right)} \nonumber \\ &\approx {w}_0^2{\rho}_0\left[1+\displaystyle\frac{1}{8}{\overline{\nu}}_{\rm s}-\displaystyle\frac{5}{864}{\overline{\nu}}_{\rm s}^2+\mathcal{O}\left({\overline{\nu}}_{\rm s}^3\right)\right],\end{align}$$ ((46))

    View in Article

    $$\begin{align}\mathcal{G}{\left(3,3\right)}_{\rm sat} & \simeq \displaystyle\frac{\iint {{\rm d}x}^2\kern0.1em {\rm d}\zeta {e}^{\displaystyle-3\left(1+\frac{1}{\rho_0}\right)\left({x}^2+{\zeta}^2\right)-\displaystyle\frac{{\overline{\nu}}_{\rm s}}{2}{{e}}^{-{{x}}^2}\left[1+{E}\left(\zeta \right)\right]}}{\iint {{\rm d}x}^2\kern0.1em {\rm d}\zeta {e}^{-\displaystyle\frac{3}{\rho_0}\left({x}^2+{\zeta}^2\right)-\displaystyle\frac{{\overline{\nu}}_{\mathrm{s}}}{2}{{e}}^{-{{x}}^2}\left[1+{E}\left(\zeta \right)\right]}} \nonumber \\ \nonumber \\[-4pt] &\simeq \left(1-\displaystyle\frac{9}{2}{\rho}_0\right)\left(1-\displaystyle\frac{3}{8}{\rho}_0{\overline{\nu}}_{\rm s}\right),\end{align}$$ ((47))

    View in Article

    $$\begin{align}{\varepsilon}_{{\rm n},x}^2\simeq \frac{1}{2}{\left({a}_0\kern0.1em {w}_0\kern0.1em {\rho}_0\right)}^2{\mathrm{\mathcal{E}}}_{\rm n, sat}\left({\rho}_0,{\mu}_0\right),\end{align}$$ ((48))

    View in Article

    $$\begin{align} \begin{split}{\mathrm{\mathcal{E}}}_{\rm n, sat}&\simeq \left(1+\displaystyle\frac{{\overline{\nu}}_{\rm s}}{8}-\frac{5}{864}{\overline{\nu}}_{\rm s}^2\right) \\ & \quad \times \left[1-\left(\mu +11+\displaystyle\frac{3}{8}{\overline{\nu}}_{\rm s}\right){\rho}_0\right.\\ & \quad +\left.\;\left(2{\mu}^2+\displaystyle\frac{63}{2}\mu +\frac{749}{8}+\displaystyle\frac{3}{8}\left(\mu +11\right){\overline{\nu}}_{\rm s}\right){\rho}_0^2\right].\end{split}\end{align}$$ ((49))

    View in Article

    Paolo Tomassini, Francesco Massimo, Luca Labate, Leonida A. Gizzi. Accurate electron beam phase-space theory for ionization-injection schemes driven by laser pulses[J]. High Power Laser Science and Engineering, 2022, 10(2): 02000e15
    Download Citation