• Laser & Optoelectronics Progress
  • Vol. 58, Issue 21, 2106001 (2021)
Kangzhen Tian, Yaocheng Li, He Ren, Sisheng Qi, Shuai Meng, Mingjie Zhang, Xian Feng, and Zhiyong Yang*
Author Affiliations
  • Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou , Jiangsu 221116, China
  • show less
    DOI: 10.3788/LOP202158.2106001 Cite this Article Set citation alerts
    Kangzhen Tian, Yaocheng Li, He Ren, Sisheng Qi, Shuai Meng, Mingjie Zhang, Xian Feng, Zhiyong Yang. Fabrication of Chalcogenide Fiber with Ridged Core and Its Linearly Polarized Supercontinuum Spectrum Generation[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2106001 Copy Citation Text show less
    References

    [1] Dai S X, Wang Y Y, Peng X F et al. A review of mid-infrared supercontinuum generation in chalcogenide glass fibers[J]. Applied Sciences, 8, 707(2018).

    [2] Dai S X, Wang M, Wang Y Y et al. Review of mid-infrared supercontinuum spectrum generation based on chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 57, 071603(2020).

    [3] Zhao Z M, Chen P, Wang X S et al. A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion[J]. Journal of the American Ceramic Society, 102, 5172-5179(2019).

    [4] Yang L Y, Li Y, Zhang B et al. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration[J]. Photonics Research, 7, 1061-1065(2019).

    [5] Robichaud L R, Duval S, Pleau L P et al. High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source[J]. Optics Express, 28, 107-115(2020).

    [6] Guo W, Zhang B, Zhai C C et al. Fabrication and application of small core chalcogenide glass fibers in nonlinear optics[J]. Journal of Inorganic Materials, 31, 180-184(2016).

    [7] Yu Y, Gai X, Ma P et al. Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide[J]. Optics Letters, 41, 958-961(2016).

    [8] Martinez R A, Plant G, Guo K W et al. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers[J]. Optics Letters, 43, 296-299(2018).

    [9] Kedenburg S, Strutynski C, Kibler B et al. High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 μm in robust step-index tellurite fibers[J]. Journal of the Optical Society of America B, 34, 601-607(2017).

    [10] Qin G S, Yan X, Kito C et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Applied Physics Letters, 95, 161103(2009).

    [11] Zhang N, Peng X F, Wang Y Y et al. Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion[J]. Optics Express, 27, 10311-10319(2019).

    [12] Tian K Z, Hu Y S, Ren H et al. Ge-As-S chalcogenide glass fiber with high laser damage threshold and mid-infrared supercontinuum generation[J]. Acta Physica Sinica, 70, 047801(2021).

    [13] Hu Y S, Tian K Z, Li T T et al. Mid-infrared nonlinear optical performances of Ge-Sb-S chalcogenide glasses[J]. Optical Materials Express, 11, 695-706(2021).

    [14] Zhang M J, Li L, Li T T et al. Mid-infrared supercontinuum generation in chalcogenide fibers with high laser damage threshold[J]. Optics Express, 27, 29287-29296(2019).

    [15] Yu Q S, Zhang X Y, Zhang Z P. Research progress of chalcogenide glasses with third-order optical nonlinearity[J]. Laser & Optoelectronics Progress, 55, 080003(2018).

    [16] Guo H T, Cui J, Xu Y T et al. Progress in preparation and applications of low-loss chalcogenide infrared fibers[J]. Laser & Optoelectronics Progress, 56, 170606(2019).

    [17] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 11, 1770023(2017).

    [18] Xue Z G, Liu S, Zhao Z M et al. Infrared suspended-core fiber fabrication based on stacked chalcogenide glass extrusion[J]. Journal of Lightwave Technology, 36, 2416-2421(2018).

    [19] Wang Y Y, Dai S X, Li G T et al. 1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime[J]. Optics Letters, 42, 3458-3461(2017).

    [20] Ren H, Yu Y, Zhai C C et al. Chalcogenide glass fibers with a rectangular core for polarized mid-infrared supercontinuum generation[J]. Journal of Non-Crystalline Solids, 517, 57-60(2019).

    [21] Zhang B, Guo W, Yu Y et al. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation[J]. Journal of the American Ceramic Society, 98, 1389-1392(2015).

    [22] Sun M Y, Yang A P, Zhang X H et al. Ga-Sb-S-I chalcohalide glasses and fibers for mid-infrared applications[J]. Journal of the American Ceramic Society, 102, 6600-6605(2019).

    [23] Yang Y, Chen Y X, Liu Y H et al. Tailoring structure and property of Ge-As-S chalcogenide glass[J]. Acta Physica Sinica, 65, 127801(2016).

    [24] Zhong M H, Wang X G, Jiao K et al. Eco-friendly Ge-Se chalcogenide fiber extrusion preparation and supercontinuum generation[J]. Laser & Optoelectronics Progress, 56, 170618(2019).

    [25] Zhang B, Yu Y, Zhai C C et al. High brightness 2.2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber[J]. Journal of the American Ceramic Society, 99, 2565-2568(2016).

    [26] Yu Y, Zhang B, Gai X et al. 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power[J]. Optics Letters, 40, 1081-1084(2015).

    [27] Wang T, Gai X, Wei W H et al. Systematic Z-scan measurements of the third order nonlinearity of chalcogenide glasses[J]. Optical Materials Express, 4, 1011-1022(2014).

    Kangzhen Tian, Yaocheng Li, He Ren, Sisheng Qi, Shuai Meng, Mingjie Zhang, Xian Feng, Zhiyong Yang. Fabrication of Chalcogenide Fiber with Ridged Core and Its Linearly Polarized Supercontinuum Spectrum Generation[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2106001
    Download Citation