• Photonic Sensors
  • Vol. 11, Issue 2, 262 (2021)
Xi YANG1, Chaoyang GONG1、2, Yiling LIU1, Yunjiang RAO1、3, Mateusz SMIETANA4, and Yuan GONG1、*
Author Affiliations
  • 1Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
  • 3Research Center for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 310000, China
  • 4Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland
  • show less
    DOI: 10.1007/s13320-021-0622-9 Cite this Article
    Xi YANG, Chaoyang GONG, Yiling LIU, Yunjiang RAO, Mateusz SMIETANA, Yuan GONG. Recent Progress in Fiber Optofluidic Lasing and Sensing[J]. Photonic Sensors, 2021, 11(2): 262 Copy Citation Text show less
    References

    [1] F. T. S. Yu and S. Yin, Fiber optic sensors. New York: Wiley Encyclopedia of Biomedical Engineering, 2002.

    [2] M. Janik, E. Brzozowska, P. Czyszczon, A. Celebanska, M. Koba, and A. Gamian, “Optical fiber aptasensor for label-free bacteria detection in small volumes,” Sensors and Actuators B, 2020, 330: 129316.

    [3] M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber technology: a new avenue for optical nanosensors,” Photonic Sensors, 2012, 2(4): 289–314.

    [4] H. C. Lefevre, The fiber-optic gyroscope. London: Artech House, 2014.

    [5] Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Optics and Lasers in Engineering, 1999, 31(4): 297–324.

    [6] A. P. Zhang, S. Gao, G. Yan, and Y. Bai, “Advances in optical fiber bragg grating sensor technologies,” Photonic Sensors, 2012, 2(1): 1–13.

    [7] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, et al., “Fiber grating sensors,” Journal of Lightwave Technology, 1997, 15(8): 1442–1462.

    [8] G. Yu, Z. Cai, Y. Chen, X. Wang, Q. Zhang, Y. Li, et al., “Walkaway VSP using multimode optical fibres in a hybrid wireline,” The Leading Edge, 2016, 35(7): 936–940.

    [9] E. F. Williams, M. R. Fernández-Ruiz, R. Magalhaes, R. Vanthillo, Z. Zhan, M. González-Herráez, et al., “Distributed sensing of microseisms and teleseisms with submarine dark fibers,” Nature Communications, 2019, 10: 5778.

    [10] A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” Sensors, 2016, 16(5): 748.

    [11] H. Murayama, D. Wada, and H. Igawa, “Structural health monitoring by using fiber-optic distributed strain sensors with high spatial resolution,” Photonic Sensors, 2013, 3(4): 355–376.

    [12] A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensors and Actuators B, 2007, 125(2): 688–703.

    [13] A. B. Socorro-Leránoz, D. Santano, I. Del Villar, and I. R. Matias, “Trends in the design of wavelength-based optical fibre biosensors (2008–2018),” Biosensors and Bioelectronics, 2019, 1: 100015.

    [14] X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors (2015–2019),” Analytical Chemistry, 2020, 92(1): 397–430.

    [15] M. Piestrzynska, M. Dominik, K. Kosiel, M. Janczuk-Richter, K. Szot-Karpinska, and E. Brzozowska, “Ultrasensitive tantalum oxide nano-coated long-period gratings for detection of various biological targets,” Biosensors and Bioelectronics, 2019, 133: 8–15.

    [16] Y. Zhao, X. G Hu, S. Hu, and Y. Peng, “Applications of fiber-optic biochemical sensor in microfluidic chips: a review,” Biosensors and Bioelectronics, 2020, 166: 112447.

    [17] L. Zhang, J. Lou, and L. Tong, “Micro/nanofiber optical sensors,” Photonic Sensors, 2011, 1(1): 31–42.

    [18] Y. Wang, S. Meng, Y. Liang, L. Li, and W. Peng, “Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement,” Photonic Sensors, 2013, 3(3): 202–207.

    [19] A. P. Demchenko, Introduction to fluorescence sensing. Ukraine: Springer Science & Business Media, 2008.

    [20] Y. C. Chen and X. Fan, “Biological lasers for biomedical applications,” Advanced Optical Materials, 2019, 7(17): 1900377.

    [21] X. Fan and S. H. Yun, “The potential of optofluidic biolasers,” Nature Methods, 2014, 11(2): 141–147.

    [22] X. Wu, M. K. K. Oo, K. Reddy, Q. Chen, Y. Sun, and X. Fan, “Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range,” Nature Communications, 2014, 5: 3779.

    [23] H. Zhou, G. Feng, K. Yao, C. Yang, J. Yi, and S. Zhou, “Fiber-based tunable microcavity fluidic dye laser,” Optics Letters, 2013, 38(18): 3604–3607.

    [24] Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Applied Physics Letters, 2006, 88(9): 091101.

    [25] G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, et al., “A multicolor microfluidic droplet dye laser with single mode emission,” Applied Physics Letters, 2011, 98(11): 111111.

    [26] R. M. Gerosa, A. Sudirman, L. de S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica, 2015, 2(2): 186–193.

    [27] C. Gong, Y. Gong, W. L. Zhang, Y. Wu, Y. J. Rao, G. D. Peng, et al., “Fiber optofluidic microlaser with lateral single mode emission,” IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0900206.

    [28] F. Vollmer and S. Arnold, “Whispering-gallerymode biosensing: label-free detection down to single molecules,” Nature Methods, 2008, 5(7): 591–596.

    [29] M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Sicence, 2016, 354(6312): 600–603.

    [30] Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Advanced Materials, 2017, 29(12): 1604920.

    [31] H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wavecoupled gain,” Physical Review Letters, 2000, 85(15): 3161–3164.

    [32] Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Optics Letters, 2009, 34(7): 1042–1044.

    [33] X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Applied Physics Letters, 2009, 94(24): 241109.

    [34] Y. Zhang, W. Meng, H. Yang, Y. Chu, and X. Pu, “Demonstration of polarization mode selection and coupling efficiency of optofluidic ring resonator lasers,” Optics Letters, 2015, 40(21): 5101–5104.

    [35] Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, “Optofluidic lasers with a single molecular layer of gain,” Lab on a Chip, 2014, 14(24): 4590–4595.

    [36] W. Lee, Q. Chen, X. Fan, and D. K. Yoon, “Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption,” Lab on a Chip, 2016, 16(24): 4770–4776.

    [37] S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Applied Physics Letters, 2007, 90(22): 221101.

    [38] S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, et al., “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Optics Express, 2007, 15(23): 15523–15530.

    [39] Y. Wang, K. S. Leck, D. Van Ta, R. Chen, V. Nalla, Y. Gao, et al., “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Advanced Materials, 2015, 27(1): 169–175.

    [40] Y. Xu, C. Gong, Q. Chen, Y. Luo, Y. Wu, Y. Wang, et al., “Highly reproducible, isotropic optofluidic laser based on hollow optical fiber,” IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 0900206.

    [41] D. Yan, H. Zhang, B. Liu, B. Huang, J. Sun, and D. Wang, “Optofluidic microring resonator laser based on cavity-assisted energy transfer in dye-infiltrated side-hole microstructured optical fibers,” Journal of Lightwave Technology, 2017, 35(19): 4153–4158.

    [42] J. Yu, Y. Liu, Y. Wang, Z. Wang, X. Zhang, X. Liu, et al., “Optofluidic laser based on a hollow-core negative-curvature fiber,” Nanophotonics, 2018, 7(7): 1307–1315.

    [43] D. Yan, B. Liu, H. Zhang, Y. Li, and T. Han, “Observation of lasing emission based on a hexagonal cavity embedded in a Kagome PCF,” IEEE Photonics Technology Letters, 2018, 30(13): 1202–1205.

    [44] Z. L. Li, Y. G. Liu, M. Yan, W. Y. Zhou, C. F. Ying, Q. Ye, et al., “A simplified hollow-core microstructured optical fibre laser with microring resonators and strong radial emission,” Applied Physics Letters, 2014, 105(7): 071902.

    [45] B. H. Soffer and B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Applied Physics Letters, 1967, 10(10): 266–267.

    [46] A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, et al., “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Progress in Materials Science, 2012, 57(8): 1426–1491.

    [47] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, et al., “Optical gain and stimulated emission in nanocrystal quantum dots,” Science, 2000, 290(5490): 314–317.

    [48] W. F. Zhang, H. Zhu, S. F. Yu, and H. Y. Yang, “Observation of lasing emission from carbon nanodots in organic solvents,” Advanced Materials, 2012, 24(17): 2263–2267.

    [49] R. G. Smart, D. C. Hanna, A. C. Tropper, S. T. Davey, S. F. Carter, and D. Szebesta, “CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr3+-doped fluoride fibre,” Electronics Letters, 1991, 27(14): 1307–1309.

    [50] M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nature Photonics, 2011, 5(7): 406–410.

    [51] N. Martino, S. J. J. Kwok, A. C. Liapis, S. Forward, H. Jang, H. M. Kim, et al., “Wavelength-encoded laser particles for massively multiplexed cell tagging,” Nature Photonics, 2019, 13(10): 720–727.

    [52] Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluidics and Nanofluidics, 2008, 4(1–2): 145–158.

    [53] J. Wu, W. Wang, C. Gong, Q. Li, Z. Li, G. Deng, et al., “Tuning the strength of intramolecular charge-transfer of triene-based nonlinear optical dyes for electro-optics and optofluidic lasers,” Journal of Materials Chemistry C, 2017, 5(30): 7472–7478.

    [54] Y. Chen, L. Lei, K. Zhang, J. Shi, L. Wang, H. Li, et al., “Optofluidic microcavities: dye-lasers and biosensors,” Biomicrofluidics, 2010, 4(4): 043002.

    [55] W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Applied Physics Letters, 2011, 99(9): 091102.

    [56] J. D. Suter, W. Lee, D. J. Howard, E. Hoppmann, I. M. White, and X. Fan, “Demonstration of the coupling of optofluidic ring resonator lasers with liquid waveguides,” Optics Letters, 2010, 35(17): 2997–2999.

    [57] H. J. Moon, Y. T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, “Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser,” Applied Physics Letters, 2000, 76(25): 3679–3681.

    [58] H. J. Moon, J. Yi, J. T. Kim, and J. Lee, “Effect of refractive index change on the interference modulation of Q values in a layered cylindrical microlaser,” Japanese Journal of Applied Physics, 1999, 38(4): L377–L379.

    [59] C. Gong, Y. Gong, X. Zhao, Y. Luo, Q. Chen, X. Tan, et al., “Distributed fibre optofluidic laser for chip-scale arrayed biochemical sensing,” Lab on a Chip, 2018, 18(18): 2741–2748.

    [60] S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Physical Review B, 1997, 56(8): R4363–R4366.

    [61] X. Zhao, Y. Wang, C. Liao, G. D. Peng, Y. Gong, and Y. Wang, “Polymer-coated hollow fiber optofluidic laser for refractive index sensing,” Journal of Lightwave Technology, 2020, 38(6): 1550–1556.

    [62] H. Tanaka, Y. Yoshida, T. Nakao, N. Tsujimoto, A. Fujii, and M. Ozaki, “Photopumped laser oscillation and charge carrier mobility of composite films based on poly(3-hexylthiophene)s with different stereoregularity,” Japanese Journal of Applied Physics, 2006, 45(37–41): L1077–L1079.

    [63] Y. Yoshida, Y. Nishihara, A. Fujii, M. Ozaki, K. Yoshino, H. K. Kim, et al., “Optical properties and microring laser of conducting polymers with Sn atoms in main chains,” Journal of Applied Physics, 2004, 95(8): 4193–4196.

    [64] Y. Yoshida, T. Nishimura, A. Fujii, M. Ozaki, and K. Yoshino, “Dual ring laser emission of conducting polymers in microcapillary structures,” Applied Physics Letters, 2005, 86(14): 141903.

    [65] H. Yanagi, R. Takeaki, S. Tomita, A. Ishizumi, F. Sasaki, K. Yamashita, et al., “Dye-doped polymer microring laser coupled with stimulated resonant Raman scattering,” Applied Physics Letters, 2009, 95(3): 033306.

    [66] H. J. Moon, G. W. Park, S. B. Lee, K. An, and J. H. Lee, “Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity,” Optics Communications, 2004, 235(4–6): 401–407.

    [67] A. Fran-ois, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Optics Express, 2016, 24(12): 12466–12477.

    [68] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, 1996, 271(5251): 933–937.

    [69] M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, 1998, 281(5385): 2013–2016.

    [70] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nature Methods, 2008, 5(9): 763–775.

    [71] L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” The Journal of Chemical Physics, 1984, 80(9): 4403–4409.

    [72] M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nature Biotechnology, 2001, 19(7): 631–635.

    [73] P. Alivisatos, “The use of nanocrystals in biological detection,” Nature Biotechnology, 2004, 22(1): 47–52.

    [74] V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, et al., “Single-exciton optical gain in semiconductor nanocrystals,” Nature, 2007, 447(7143): 441–446.

    [75] J. Schafer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, et al., “Quantum dot microdrop laser,” Nano Letters, 2008, 8(6): 1709–1712.

    [76] Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, et al., “Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping,” Advanced Materials, 2015, 27(1): 169–175.

    [77] M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Advanced Materials, 2002, 14(4): 317–321.

    [78] N. Zhang, H. Liu, A. M. Stolyarov, T. Zhang, K. Li, P. P. Shum, et al., “Azimuthally polarized radial emission from a quantum dot fiber laser,” ACS Photonics, 2016, 3(12): 2275–2279.

    [79] A. Kiraz, Q. Chen, and X. Fan, “Optofluidic lasers with aqueous quantum dots,” ACS Photonics, 2015, 2(6): 707–713.

    [80] S. J. Tang, Z. Liu, Y. J. Qian, K. Shi, Y. Sun, C. Wu, et al., “A tunable optofluidic microlaser in a photostable conjugated polymer,” Advanced Materials, 2018, 30(50): 1804556.

    [81] S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Advanced Materials, 2013, 25(41): 5943–5947.

    [82] A. Joná-, M. Aas, Y. Karadag, S. Manio-lu, S. Anand, D. McGloin, et al., “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab on a Chip, 2014, 14(16): 3093–3100.

    [83] M. Humar and S. H. Yun, “Intracellular microlasers,” Nature Photonics, 2015, 9(9): 572–577.

    [84] M. Humar and S. H. Yun, “Whispering-gallerymode emission from biological luminescent protein microcavity assemblies,” Optica, 2017, 4(2): 222–228.

    [85] X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,” Applied Physics Letters, 2013, 102(20): 203706.

    [86] Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, and X. Fan, “Highly sensitive fluorescent protein FRET detection using optofluidic lasers,” Lab on a Chip, 2013, 13(14): 2679–2681.

    [87] Y. C. Chen, Q. Chen, and X. Fan, “Optofluidic chlorophyll lasers,” Lab on a Chip, 2016, 16(12): 2228–2235.

    [88] W. Lee, D. Bin Kim, M. H. Song, and D. K. Yoon, “Optofluidic ring resonator laser with an edible liquid gain medium,” Optics Express, 2017, 25(13): 14043–14048.

    [89] Y. C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica, 2016, 3(8): 809–815.

    [90] N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y. Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein,” Nature Biotechnology, 2004, 22(12): 1567–1572.

    [91] E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, et al., “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nature Methods, 2007, 4(7): 555–557.

    [92] M. C. Gather and S. H. Yun, “Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein,” Optics Letters, 2011, 36(16): 3299–3301.

    [93] R. Y. Tsien and A. Miyawaki, “Seeing the machinery of live cells,” Science, 1998, 280(5371): 1954–1955.

    [94] A. J. Lam, F. St-Pierre, Y. Gong, J. D. Marshall, P. J. Cranfill, M. A. Baird, et al., “Improving FRET dynamic range with bright green and red fluorescent proteins,” Nature Methods, 2012, 9(10): 1005–1012.

    [95] A. M. Stolyarov, L. Wei, O. Shapira, F. Sorin, S. L. Chua, J. D. Joannopoulos, et al., “Microfluidic directional emission control of an azimuthally polarized radial fibre laser,” Nature Photonics, 2012, 6(4): 229–233.

    [96] O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, F. Viens, et al., “Surface-emitting fiber lasers,” Optics Express, 2006, 14(9): 3929–3935.

    [97] Z. L. Li, W. Y. Zhou, M. M. Luo, Y. G. Liu, and J. G. Tian, “Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber,” Optics Express, 2015, 23(8): 10413–10420.

    [98] M. Rein, V. D. Favrod, C. Hou, T. Khudiyev, A. Stolyarov, J. Cox, et al., “Diode fibres for fabric-based optical communications,” Nature, 2018, 560(7717): 214–218.

    [99] S. Park, Y. Guo, X. Jia, H. K. Choe, B. Grena, J. Kang, et al., “One-step optogenetics with multifunctional flexible polymer fibers,” Nature Neuroscience, 2017, 20(4): 612–619.

    [100] ] A. Fernandez-Bravo, K. Yao, E. S. Barnard, N. J. Borys, E. S. Levy, B. Tian, et al., “Continuouswave upconverting nanoparticle microlasers,” Nature Nanotechnology, 2018, 13(7): 572–577.

    [101] ] M. Schubert, A. Steude, P. Liehm, N. M. Kronenberg, M. Karl, E. C. Campbell, et al., “Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking,” Nano Letters, 2015, 15(8): 5647–5652.

    [102] ] C. Gong, Y. Gong, M. K. Khaing Oo, Y. Wu, Y. Rao, X. Tan, et al., “Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme,” Biosensors and Bioelectronics, 2017, 96: 351–357.

    [103] ] H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” Journal of the American Chemical Society, 2009, 131(46): 16612–16613.

    [104] ] Y. Sun, S. I. Shopova, C. S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(37): 16039–16042.

    [105] ] Y. C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nature Biomedical Engineering, 2017, 1(9): 724–735.

    [106] ] S. Nizamoglu, K. B. Lee, M. C. Gather, K. S. Kim, M. Jeon, S. Kim, et al., “A simple approach to biological single-cell lasers via intracellular dyes,” Advanced Optical Materials, 2015, 3(9): 1197–1200.

    [107] ] M. Humar, M. C. Gather, and S. H. Yun, “Cellular dye lasers: lasing thresholds and sensing in a planar resonator,” Optics Express, 2015, 23(21): 27865–27879.

    [108] ] L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Optics Letters, 2012, 37(18): 3873–3875.

    [109] ] Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, et al., “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab on a Chip, 2013, 13(17): 3351–3354.

    [110] ] Y. Sun and X. Fan, “Highly selective single-nucleotide polymorphism detection with optofluidic ring resonator lasers,” in Conference on Lasers and Electro-Optics: Science and Innovations, California, 2011, pp. CWL6.

    [111] ] Z. Yuan, X. Cheng, Y. Zhou, X. Tan, X. Gong, H. Rivy, et al., “Distinguishing small molecules in microcavity with molecular laser polarization,” ACS Photonics, 2020, 7(8): 1908–1914.

    [112] ] W. Lee and X. Fan, “Intracavity DNA melting analysis with optofluidic lasers,” Analytical Chemistry, 2012, 84(21): 9558–9563.

    [113] ] Y. Sun and X. Fan, “Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers,” Angewandte Chemie – International Edition, 2012, 51(5): 1236–1239.

    [114] ] J. C. Galas, C. Peroz, Q. Kou, and Y. Chen, “Microfluidic dye laser intracavity absorption,” Applied Physics Letters, 2006, 89(22): 224101.

    [115] ] X. Zhang, W. Lee, and X. Fan, “Bio-switchable optofluidic lasers based on DNA Holliday junctions,” Lab on a Chip, 2012, 12(19): 3673–3675.

    [116] ] X. Yang, Y. Luo, Y. Liu, C. Gong, Y. Wang, Y. J. Rao, et al., “Mass production of thin-walled hollow optical fibers enables disposable optofluidic laser immunosensors,” Lab on a Chip, 2020, 20(5): 923–930.

    [117] ] C. Gong, Y. Gong, Q. Chen, Y. J. Rao, G. D. Peng, and X. Fan, “Reproducible fiber optofluidic laser for disposable and array applications,” Lab on a Chip, 2017, 17(20): 3431–3436.

    [118] ] L. Ren, X. Zhang, X. Guo, H. Wang, and X. Wu, “High-sensitivity optofluidic sensor based on coupled liquid-core laser,” IEEE Photonics Technology Letters, 2017, 29(8): 639–642.

    [119] ] X. Zhang, L. Ren, X. Wu, H. Li, L. Liu, and L. Xu, “Coupled optofluidic ring laser for ultrahighsensitive sensing,” Optics Express, 2011, 19(22): 22242–22247.

    [120] ] X. Shi, K. Ge, J. H. Tong, and T. Zhai, “Low-cost biosensors based on a plasmonic random laser on fiber facet,” Optics Express, 2020, 28(8): 12233–12242.

    [121] ] Y. Wei, X. Lin, C. Wei, W. Zhang, Y. Yan, and Y. S. Zhao, “Starch-based biological microlasers,” ACS Nano, 2017, 11(1): 597–602.

    [122] ] Y. C. Chen, Q. Chen, T. Zhang, W. Wang, and X. Fan, “Versatile tissue lasers based on high-Q Fabry-Pérot microcavities,” Lab on a Chip, 2017, 17(3): 538–548.

    [123] ] C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab on a Chip, 2013, 13(14): 2675–2678.

    [124] ] M. Humar, A. Dobravec, X. Zhao, and S. H. Yun, “Biomaterial microlasers implantable in the cornea, skin, and blood,” Optica, 2017, 4(9): 1080–1085.

    [125] ] Q. Chen, Y. C. Chen, Z. Zhang, B. Wu, R. Coleman, and X. Fan, “An integrated microwell array platform for cell lasing analysis,” Lab on a Chip, 2017, 17(16): 2814–2820.

    [126] ] R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Applied Physics Letters, 2004, 85(7): 1289–1291.

    [127] ] R. C. Polson and Z. V. Vardeny, “Cancerous tissue mapping from random lasing emission spectra,” Journal of Optics, 2010, 12(2): 024010.

    [128] ] Q. Song, S. Xiao, Z. Xu, J. Liu, X. Sun, V. Drachev, et al., “Random lasing in bone tissue,” Optics Letters, 2010, 35(9): 1425–1427.

    [129] ] M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Advanced Materials, 2015, 27(27): 4081–4086.

    [130] ] J. Zhao, Y. Yan, Z. Gao, Y. Du, H. Dong, J. Yao, et al., “Full-color laser displays based on organic printed microlaser arrays,” Nature Communications, 2019, 10: 870.

    [131] ] X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu, et al., “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nature Communications, 2016, 7: 10304.

    [132] ] M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, et al., “Flexible and ultra-lightweight polymer membrane lasers,” Nature Communications, 2018, 9: 1525.

    [133] ] Y. J. Heo, H. Shibata, T. Okitsu, T. Kawanishi, and S. Takeuchi, “Long-term in vivo glucose monitoring using fluorescent hydrogel fibers,” Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(33): 13399–13403.

    [134] ] R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Applied Physics Letters, 1981, 38(9): 671–672.

    [135] ] A. Penzkofer, “Passive Q-switching and modelocking for the generation of nanosecond to femtosecond pulses,” Applied Physics B Photophysics and Laser Chemistry, 1988, 46(1): 43–60.

    [136] ] L. Shi, T. Zhu, D. Huang, M. Liu, M. Deng, and W. Huang, “In-fiber whispering-gallery-mode resonator fabricated by femtosecond laser micromachining,” Optics Letters, 2015, 40(16): 3770–3773.

    [137] ] N. Zhang, K. Li, Y. Cui, Z. Wu, P. P. Shum, J. L. Auguste, et al., “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels,” Lab on a Chip, 2018, 18(4): 655–661.

    [138] ] P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, et al., “Lab on fiber technology for biological sensing applications,” Laser & Photonics Reviews, 2016, 10(6): 922–961.

    Xi YANG, Chaoyang GONG, Yiling LIU, Yunjiang RAO, Mateusz SMIETANA, Yuan GONG. Recent Progress in Fiber Optofluidic Lasing and Sensing[J]. Photonic Sensors, 2021, 11(2): 262
    Download Citation