• Photonic Sensors
  • Vol. 11, Issue 3, 298 (2021)
Yongxiang CHEN1, Jiaqi LI2, Zinan WANG1、*, Andrei STANCALIE3, Daniel IGHIGEANU3, Daniel NEGUT4, Dan SPOREA3, and Gangding PENG5
Author Affiliations
  • 1Key Lab of Optical Fiber Sensing & Communications, University of Electronic Science & Technology of China, Chengdu 611731, China
  • 2Metrology and Testing Center, China Academy of Engineering Physics (CAEP), Mianyang 621900, China
  • 3National Institute for Laser, Plasma and Radiation Physics Center for Advanced Laser Technologies, Magurele RO-077125, Romania
  • 4“Horia Hulubei” National Institute of Physics and Nuclear Engineering, MAgurele RO-077125, Romania
  • 5Photonics and Optical Communications, The University of New South Wales (UNSW), Sydney 2052, Australia
  • show less
    DOI: 10.1007/s13320-020-0580-7 Cite this Article
    Yongxiang CHEN, Jiaqi LI, Zinan WANG, Andrei STANCALIE, Daniel IGHIGEANU, Daniel NEGUT, Dan SPOREA, Gangding PENG. Quantitative Measurement of γ-Ray and e-Beam Effects on Fiber Rayleigh Scattering Coefficient[J]. Photonic Sensors, 2021, 11(3): 298 Copy Citation Text show less
    References

    [1] A. T. Young, “Rayleigh scattering,” Applied Optics, 1981, 20(4): 533–535.

    [2] L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1899, 47(287): 375–384.

    [3] S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, et al., “Random distributed feedback fibre laser,” Nature Photonics, 2010, 4(4): 231.

    [4] Z. N. Wang, H. Wu, M. Fan, L. Zhang, Y. Rao, W. Zhang, et al., “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(1): 10–15.

    [5] D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, et al., “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Physical Review A, 2010, 82(3): 033828.

    [6] X. Wang, D. Chen, H. Li, L. She, and Q. Wu, “Random fiber laser based on artificially controlled backscattering fibers,” Applied Optics, 2018, 57(2): 258–262.

    [7] Z. N. Wang, L. Zhang, S. Wang, N. T. Xue, F. Peng, M. Q. Fan, et al., “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Optics Express, 2016, 24(2): 853–858.

    [8] Z. N. Wang, B. Zhang, J. Xiong, Y. Fu, S. T. Lin, J. L. Jiang, et al., “Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR,” IEEE Internet of Things Journal, 2019, 6(4): 6117–6124.

    [9] S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Optics Express, 2015, 23(26): 33301–33309.

    [10] S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Scientific Reports, 2015, 5: 11177.

    [11] A. Yan, S. Huang, S. Li, R. Chen, P. Ohodnicki, M. Buric, et al., “Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations,” Scientific Reports, 2017, 7(1): 9360.

    [12] A. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” Journal of Lightwave Technology, 1983, 1(3): 498–509.

    [13] D. Johlen, P. Knappe, H. Renner, and E. Brinkmeyer, “UV-induced absorption, scattering and transition losses in UV side-written fibers,” OFC/IOOC., San Diego, CA, USA, Feb. 21, 1999, 3: 50–52.

    [14] P. L. Mattem, L. M. Watkins, C. D. Skoog, J. R. Brandon, and E. H. Barsis, “The effects of radiation on the absorption and luminescence of fiber optic waveguides and materials,” IEEE Transactions on Nuclear Science, 1974, 21(6): 81–95.

    [15] E. J. Friebele, “Optical fiber waveguides in radiation environments,” Optical Engineering, 1979, 18(6): 186552.

    [16] M. Kyoto, Y. Chigusa, M. Ohe, H. Go, M. Watanabe, T. Matsubara, et al., “Gamma-ray radiation hardened properties of pure silica core single-mode fiber and its data link system in radioactive environments,” Journal of Lightwave Technology, 1992, 10(3): 289–294.

    [17] H. Henschel, O. Kohn, H. U. Schmidt, E. Bawirzanski, and A. Landers, “Optical fibres for high radiation dose environments,” IEEE Transactions on Nuclear Science, 1994, 41(3): 510–516.

    [18] W. Primak, “Fast-neutron-induced changes in quartz and vitreous silica,” Physical Review, 1958, 110(6): 1240.

    [19] S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, et al., “Radiation effects on silica-based optical fibers: Recent advances and future challenges,” IEEE Transactions on Nuclear Science, 2013, 60(3): 2015–2036.

    [20] S. Rizzolo, A. Boukenter, E. Marin, M. Cannas, J. Perisse, S. Bauer, et al., “Vulnerability of OFDR-based distributed sensors to high γ-ray doses,’’ Optics Express, 2015, 23(15): 18997–19009.

    [21] C. Sabatier, S. Rizzolo, A. Morana, T. Allanche, T. Robin, B. Cadier, et al., “6-mev electron exposure effects on OFDR-based distributed fiber-based sensors,’’ IEEE Transactions on Nuclear Science, 2018, 65(8): 1598–1603.

    [22] J. Wu, L. Ma, F. Tu, and Z. He, “Investigation of radiation effect on single-mode fiber for distributed radiation sensing application,” in 2018 Asia Communications and Photonics Conference (ACP),Hangzhou, China, Oct. 26–29, 2018, pp. 1–3.

    [23] Z. N. Wang, M. Q. Fan, L. Zhang, H. Wu, D. V. Churkin, Y. Li, et al., “Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source,” Optics Express, 2015, 23(12): 15514–15520.

    [24] L. B. Liokumovich, N. A. Ushakov, O. I. Kotov, M. A. Bisyarin, and A. H. Hartog, “Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions,” Journal of Lightwave Technology, 2015, 33(17): 3660–3671.

    Yongxiang CHEN, Jiaqi LI, Zinan WANG, Andrei STANCALIE, Daniel IGHIGEANU, Daniel NEGUT, Dan SPOREA, Gangding PENG. Quantitative Measurement of γ-Ray and e-Beam Effects on Fiber Rayleigh Scattering Coefficient[J]. Photonic Sensors, 2021, 11(3): 298
    Download Citation