• Matter and Radiation at Extremes
  • Vol. 6, Issue 5, 056901 (2021)
D. Raffestin1、2、a), L. Lecherbourg3, I. Lantuéjoul3, B. Vauzour3, P. E. Masson-Laborde3、4, X. Davoine3、4, N. Blanchot1, J. L. Dubois1、2, X. Vaisseau3, E. d’Humières2, L. Gremillet3、4, A. Duval3, Ch. Reverdin3, B. Rosse3, G. Boutoux3, J. E. Ducret5, Ch. Rousseaux3, V. Tikhonchuk2、6, and D. Batani2
Author Affiliations
  • 1CEA, DAM, CESTA, F-33116 Le Barp, France
  • 2Centre Laser Intenses et Applications, Université de Bordeaux–CNRS–CEA, UMR 5107, 33405 Talence, France
  • 3CEA, DAM, DIF, F-91297 Arpajon, France
  • 4Université Paris–Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France
  • 5CEA, DRF, IRFU, GANIL, F-14000 Caen, France
  • 6ELI-Beamlines Research Centre, 25241 Dolní Břežany, Czech Republic
  • show less
    DOI: 10.1063/5.0046679 Cite this Article
    D. Raffestin, L. Lecherbourg, I. Lantuéjoul, B. Vauzour, P. E. Masson-Laborde, X. Davoine, N. Blanchot, J. L. Dubois, X. Vaisseau, E. d’Humières, L. Gremillet, A. Duval, Ch. Reverdin, B. Rosse, G. Boutoux, J. E. Ducret, Ch. Rousseaux, V. Tikhonchuk, D. Batani. Enhanced ion acceleration using the high-energy petawatt PETAL laser[J]. Matter and Radiation at Extremes, 2021, 6(5): 056901 Copy Citation Text show less
    References

    [1] A.Casner, J. P.LeBreton, R.Wrobel, B.Villette, J. L.Miquel, N.Blanchot, S.Darbon, R.Rosch, B.Rosse, A.Duval, I.Thfouin, J. P.Jadaud, T.Caillaud, C.Reverdin. LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics. High Energy Density Phys., 17, 2-11(2015).

    [2] R.Betti, O. A.Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435-448(2016).

    [3] W.Theobald, D.Batani, A.Casner, O.Klimo, M.Koenig, X.Ribeyre, C.Labaune, S.Depierreux, S.Baton, G.Schurtz, C.Rousseaux, V. T.Tikhonchuk, M.Hohenberger. Physical issues in shock ignition. Nucl. Fusion, 54, 054009(2014).

    [4] C.Regan, C.Fourment, F.Dorchies, L.Volpe, B.Vauzour, A.Morace, F.Perez, Ph.Nicolai, S.Hulin, J. J.Santos, D.Batani et al. Proton radiography of laser-driven imploding target in cylindrical geometry. Phys. Plasmas, 18, 012704(2011).

    [5] F. N.Beg, L. C.Jarrott, M.Nakatsutsumi, L.Fedeli, J. J.Santos, P.Nicolai, A.Margarit, A.Morace, L.Volpe, N.Piovella, M.Nakai, X.Vaisseau, M. S.Wei, S.Hulin, S.Baton, D.Batani. Development of x-ray radiography for high energy density physics. Phys. Plasmas, 21, 102712(2014).

    [6] A.Schiavi, V.Bagnoud, D.Batani, C.Brabetz, L.Volpe, S.Atzeni, D.Mancelli, P.Neumayer, B.Borm, G.Zeraouli, L.Antonelli, F.Barbato, N.Woolsey, J.Trela, G.Boutoux, P.Bradford, B.Zielbauer. X-ray phase-contrast imaging for laser-induced shock waves. Europhys. Lett., 125, 35002(2019).

    [7] J. J.Santos, J.Jacoby, L.Giuffrida, G.Boutoux, D.Khaghani, P.Neumayer, T.Sakaki, O. N.Rosmej, A.Franz, L.Antonelli, A.Sch?nlein, S.Pikuz, A.Debayle, D.Batani, J. J.Honrubia, A.Sauteray. Generation and characterization of warm dense matter isochorically heated by laser-induced relativistic electrons in a wire target. Europhys. Lett., 114, 45002(2016).

    [8] J.Morton, D. J.Hoarty, H.Doyle, E.Gumbrell, S. F.James, C. R. D.Brown, M.Hill, T.Guymer. Equation of state studies of warm dense matter samples heated by laser produced proton beams. High Energy Density Phys., 8, 50-54(2012).

    [9] P.Nicola?, P.Forestier-Colleoni, K.Jakubowska, B.Vauzour, A.Flacco, D.Batani, V.Malka, S.Hulin, J. J.Santos, J.-F.Feugeas. Generation of high-pressures by short-pulse low-energy laser irradiation by short-pulse low-energy laser irradiation. Europhys. Lett., 119, 35001(2017).

    [10] J. C.Fernández, J. J.Honrubia, R. B.Stephens, L.Yin, F. N.Beg, B. M.Hegelich, M.Roth, M. E.Foord, B. J.Albright. Fast ignition with laser-driven proton and ion beams. Nucl. Fusion, 54, 054006(2014).

    [11] R. H. H.Scott, P. M.Nilson, F. N.Beg, S.Baton, P.Patel, D.Batani, M.Wei, P.Norreys, J. J.Santos, R.Kodama, J.Zhang, F.Pérez, V. T.Tikhonchuk. Fast electron energy transport in solid density and compressed plasma. Nucl. Fusion, 54, 054004(2014).

    [12] L. J.Waxer, M.Barczys, M.Spilatro, E. M.Hill, M. J.Guardalben, B. E.Kruschwitz. Laser-system model for enhanced operational performance and flexibility on OMEGA EP. High Power Laser Sci. Eng., 8, e8(2020).

    [13] R.Sigurdsson, J. M.Halpin, M. A.Prantil, R. L. Acree, T. S.Budge, J. E.Heebner, L. J.Pelz, L. A.Novikova. Pulse contrast measurement on the NIF advanced radiographic capability (ARC) laser system. Proc. SPIE, 10084, 1008406(2017).

    [14] S. H.Lee, Y.Arikawa, S.Sakata, S.Kojima, X.Vaisseau, Z.Zhang, Y.Taguchi, T.Gawa, K.Matsuo, Y.Abe, A.Morace et al. Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror. Appl. Opt., 55, 6850-6857(2016).

    [15] X.Lu, X.Li, W.Ma, B.Zhu, S.Zhou, J.Zhu, G.Zhang, G.Xu, W.Fan, J.Zhu, Z.Liu et al. Status and development of high-power laser facilities at the NLHPLP. High Power Laser Sci. Eng., 6, e55(2018).

    [16] J.-L.Miquel, N.Blanchot, D.Batani. Overview of the laser mega joule (LMJ) facility and PETAL project in France. Rev. Laser Eng., 42, 131-136(2014).

    [17] N.Blanchot et al. Overview of PETAL, the multi-Petawatt project in the LMJ facility. EPJ Web Conf, 59(2013).

    [18] J.-L.Miquel, E.Prene. LMJ and PETAL status and program overview. Nucl. Fusion, 59, 032005(2018).

    [19] J.Kim et al. Computational modeling of proton acceleration with multi-picosecond and high energy, kilojoule, lasers. Phys. Plasmas, 25, 083109(2018).

    [20] A. J.Kemp, S. C.Wilks. Direct electron acceleration in multi-kilojoule, multi-picosecond laser pulses. Phys. Plasmas, 27, 103106(2020).

    [21] J.Park et al. Target normal sheath acceleration with a large laser focal diameter. Phys. Plasmas, 27, 123104(2020).

    [22] A.Morace et al. Enhancing laser beam performance by interfering intense laser beamlets. Nat. Commun., 10, 2995(2019).

    [23] R. A.Simpson et al. Scaling of laser-driven electron and proton acceleration as a function of laser pulse duration, energy, and intensity in the multi-picosecond regime. Phys. Plasmas, 28, 013108(2021).

    [24] K.Flippo et al. Omega EP, laser scalings and the 60 MeV barrier: First observations of ion acceleration performance in the 10 picosecond kilojoule short-pulse regime. J. Phys.: Conf. Ser., 244, 022033(2010).

    [25] A.Yogo et al. Boosting laser-ion acceleration with multi-picosecond pulses. Sci. Rep., 7, 42451(2017).

    [26] D.Mariscal et al. First demonstration of ARC-accelerated proton beams at the National Ignition Facility. Phys. Plasmas, 26, 043110(2019).

    [27] D.Margarone et al. Generation of α-particle beams with a multi-kJ, peta-watt class laser system. Front. Phys., 8, 343(2020).

    [28] C.Szabo-Foster, J.Caron, I.Lantuejoul-Thfoin, T.Ceccotti, L.Volpe, J.Gazave, P.Nicolai, S.Hulin, R.Wrobel, A.Compant La Fontaine, E.Lefebvre, D.Raffestin, J. L.Feugeas, D.Batani, J. L.Dubois, C.Perego, A.Casner, J. L.Miquel, A.Duval, V.Tikhonchuk, Ch.Reverdin, J.Fuchs, S.Bastiani-Ceccotti, J. E.Ducret, S.Dobosz-Dufrenoy, M.Koenig, L.Serani, N.Blanchot, E.d’Humieres. Development of the PETAL laser facility and its diagnostic tools. Acta Polytech., 53, 103-109(2013).

    [29] D.Batani, A.Duval, J.Santos, C.Szabo, L.Lecherbourg, X.Leboeuf, E.Brambrink, M.Koenig, S.Bastiani-Ceccotti, Al.Morace, Ch.Reverdin, X.Vaisseau, I.Thfoin, B.Rossé, S.Hulin, L.Giuffrida, M.Nakatsutsumi, C.Fourment. Monte-Carlo simulation of noise in hard x-ray transmission crystal spectrometers: Identification of contributors to the background noise and shielding optimization. Rev. Sci. Instrum., 85, 11D615(2014).

    [30] G.Mourou, D.Strickland. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).

    [31] P.Garcia, N.Blanchot, J.Duthu, C.Damiens-Dupont, C.Chappuis, S.Chardavoine, J. C.Chapuis, J. F.Charrier, G.Béhar, H.Co?c et al. 1.15 PW–850 J compressed beam demonstration using the PETAL facility. Opt. Express, 25, 16957(2017).

    [32] N.Blanchot, C.Rouyer, J.Néauport, C.Sauteret. Chromatism compensation of the PETAL multipetawatt high-energy laser. Appl. Opt., 46, 1568-1574(2007).

    [33] C. N.Danson et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng., 7, e54(2019).

    [34] M.Sozet et al. Sub-picosecond laser damage growth on high reflective coatings for high power applications. Opt. Express, 25, 25767(2017).

    [35] D.Raffestin et al. Application of harmonics imaging to focal spot measurements of the ‘PETAL’ laser. J. Appl. Phys., 126, 245902(2019).

    [36] B.Gastineau, D.Loiseau, D.Leboeuf, J.-C.Guillard, B.Thomas, J.-E.Ducret, D.Batani, A.Lotode, N.Rabhi, C.Pès, K.Jakubowska, A.Sa?d, J.-C.Toussaint, A.Semsoum, F.Harrault, I.Lantuejoul-Thfoin, A.Chancé, L.Serani, B.Vauzour, G.Boutoux. Calibration of the low-energy channel Thomson parabola of the LMJ-PETAL diagnostic SEPAGE with protons and carbon ions. Rev. Sci. Instrum., 89, 023304(2018).

    [37] I.Lantuejoul et al. SEPAGE: A proton-ion-electron spectrometer for LMJ-PETAL. Proc. SPIE, 10763, 107630X(2018).

    [38] N.Rabhi et al. Calibration of imaging plate detectors to mono-energetic protons in the range 1-200 MeV. Rev. Sci. Instrum., 88, 113301(2017).

    [39] A.Duval, M.Koenig, S.Bastiani-Ceccotti, A.Compant La Fontaine, E.Brambrink, R.Wrobel, S.Hulin, D.Batani, T.Ceccotti, L.Serani, I.Lantuéjoul-Thfoin, E.d’Humières, S.Dobosz-Dufrénoy, J.Fuchs, J.-L.Miquel, E.Lefebvre, J.-R.Marquès, A.Casner, C.Reverdin, J.-E.Ducret, C.Szabo-Foster, N.Blanchot. The PETAL+ project: X-ray and charged particle diagnostics for plasma experiments at LMJ-PETAL. Nucl. Instrum. Methods Phys. Res., Sect. A, 720, 141(2013).

    [40] G.Boutoux et al. Study of imaging plate detector sensitivity to 5-18 MeV electrons. Rev. Sci. Instrum., 86, 113304(2015).

    [41] N.Rabhi et al. Calibration of imaging plates to electrons between 40 and 180 MeV. Rev. Sci. Instrum., 87, 053306(2016).

    [42] A. E.Dangor, P. A.Norreys, A. R.Bell, P.Lee, M. E.Glinsky, F. N.Beg, M.Tatarakis, A. P.Fews, B. A.Hammel, C. N.Danson. A study of picosecond laser–solid interactions up to 1019 W cm−2. Phys. Plasmas, 4, 447(1997).

    [43] S. C.Wilks, H.Chen, P. K.Patel, W. L.Kruer, R.Shepherd. Hot electron energy distributions from ultraintense laser solid interactions. Phys. Plasmas, 16, 020705(2009).

    [44] M.Tabak, A. B.Langdon, S. C.Wilks, W. L.Kruer. Absorption of ultra-intense laser pulses. Phys. Rev. Lett., 69, 1383(1992).

    [45] V. T.Tikhonchuk, E.d’Humières, A.Debayle, J. J.Honrubia. Divergence of laser-driven relativistic electron beams. Phys. Rev. E, 82, 036405(2010).

    [46] A. J.Kemp, L.Divol. Interaction physics of multipicosecond petawatt laser pulses with overdense plasma. Phys. Rev. Lett., 109, 195005(2012).

    [47] M. J.Mead, R.Heathcote, P.Patel, J.Gauoin, D.Neely. Electromagnetic pulse generation within a petawatt laser target chamber. Rev. Sci. Instrum., 75, 4225(2004).

    [48] J.Kimbrough, A.Throop, D.Eder, C. G. Brown. Electromagnetic pulses at short-pulse laser facilities. J. Phys.: Conf. Ser., 112, 032025(2008).

    [49] D. A.White, T.Ma, Y.Tsui, Y.Ping, D. C.Eder, M.Perking, B.Maddox, J.Kimbrough, A.Throop, N.Back, P.Song, G.Pratt, P.Patel, W.Dehope, A.MacPhee, J.Lister, M. L.Stowell, D.O’Brien, H.Chen, C. G. Brown. Mitigation of electromagnetic pulse (EMP) effects from short-pulse lasers and fusion neutrons, 1-35(2009).

    [50] F. S.Felber. Dipole radio-frequency power from laser plasmas with no dipole moment. Appl. Phys. Lett., 86, 231501(2005).

    [51] F.Consoli et al. Laser produced electromagnetic pulses: Generation, detection and mitigation. High Power Laser Sci. Eng., 8, e22(2020).

    [52] J.-L.Dubois, A.Poyé, D.Raffestin, S.Hulin, P.Nicola?, J.Ribolzi, F.Lubrano-Lavaderci, V. T.Tikhonchuk, E.d’Humières, A.Compant La Fontaine, J.Gazave. Target charging in short-pulse-laser–plasma experiments. Phys. Rev. E, 89, 013102(2014).

    [53] L.Ry?, M.Rosiński, J.Wo?owski, J.Ribolzi, D.Makaruk, S.Hulin, V.Tikhonchuk, P.Parys, P.R?czka, A.Zara?-Szyd?owska, J. L.Dubois, P.Tchórz, J.Badziak. Experimental demonstration of an electromagnetic pulse mitigation concept for a laser driven proton source. Rev. Sci. Instrum., 89, 103301(2018).

    [54] J. D.Jackson. Classical Electrodynamics(1998).

    [55] V. Y.Bychenkov, V. N.Novikov, D.Batani, S. G.Bochkarev, V. T.Tikhonchuk. Ion acceleration from expanding multispecies plasma. Phys. Plasmas, 11, 3242(2004).

    [56] M.Roth et al. Laser accelerated ions in ICF research prospects and experiments. Plasma Phys. Controlled Fusion, 47, B841(2005).

    [57] K.Osvay, F.Lindau, A.Persson, D.Batani, P.McKenna, C.-G.Wahlstr?m, O.Lundh. Laser-accelerated protons with energy-dependent beam direction. Phys. Rev. Lett., 95, 175002(2005).

    [58] V.Malka, S.Fritzler, D.Batani, J.Faure, A.Guemnie-Tafo, E.Lefebvre, M.Manclossi, E.d’Humières. Production of energetic proton beams with lasers. Rev. Sci. Instrum., 77, 03B302(2006).

    [59] D.Batani, M.Passoni, C.Perego, A.Sgattoni. Advances in target normal sheath acceleration theory. Phys. Plasmas, 20, 060701(2013).

    [60] K. J.Witte, M.Kaluza, M. I.Santala, J.Meyer-ter-Vehn, J.Schreiber, G. D.Tsakiris, K.Eidmann. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett., 93, 045003(2004).

    [61] M.Veltcheva, C.-G.Wahlstr?m, K.Osvay, R.Dezulian, A.Persson, P.McKenna, O.Lundh, A.Flacco, R.Jafer, D.Batani, F.Lindau, D. C.Carroll, V.Malka. Effects of laser prepulses on laser-induced proton generation. New J. Phys., 12, 045018(2010).

    [62] E.Lefebvre et al. Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations. Nucl. Fusion, 59, 032010(2019).

    [63] E.Lefebvre et al. Electron and photon production from relativistic laser-plasma interactions. Nucl. Fusion, 43, 629(2003).

    [64] A. F.Lifschitz et al. Particle-in-cell modelling of laser–plasma interaction using Fourier decomposition. J. Comput. Phys., 228, 1803(2009).

    [65] M.Busquet, Ph. D.Nicola?, G. P.Schurtz. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas, 7, 4238(2000).

    [66] D.Patin, E.Lefebvre, A.Bourdier. Physica D, 206, 1(2005).

    [67] J.Meyer-ter-Vehn, Z.-M.Sheng, J.Zhang, K.Mima. Phys. Rev. E, 69, 016407(2004).

    [68] J. T.Mendon?a. Phys. Rev. A, 28, 3592(1983).

    [69] E.d’Humières, Ph.Korneev, V. Yu.Bychenkov, V. T.Tikhonchuk, S. G.Bochkarev. Stochastic electron heating in an interference field of several laser pulses of a picosecond duration. Plasma Phys. Controlled Fusion, 61, 025015(2019).

    [70] J.Faure, V.Malka, A.Lifschitz, E.Lefebvre, C.Rechatin, X.Davoine. Simulation of quasimonoenergetic electron beams produced by colliding pulse wakefield acceleration. Phys. Plasmas, 15, 113102(2008).

    [71] R.Babjak, J.Psikal. The role of standing wave in the generation of hot electrons by femtosecond laser beams incident on dense ionized target. Phys. Plasmas, 28, 023107(2021).

    [72] Y.Sentoku, H.Nishimura, N.Iwata, K.Mima, A.Yogo, H.Nagatomo, H.Azechi. Fast ion acceleration in a foil plasma heated by a multi-picosecond high intensity laser. Phys. Plasmas, 24, 073111(2017).

    [73] G. J.Williams et al. Production of relativistic electrons at subrelativistic laser intensities. Phys. Rev. E, 101, 031201(R)(2020).

    [74] M. S.Wei, B. S.Paradkar, T.Yabuuchi, S. I.Krasheninnikov, M. G.Haines, R. B.Stephens, F. N.Beg. Phys. Rev. E, 83, 046401(2011).

    [75] A.Pukhov, J.Meyer-ter-Vehn, Z.-M.Sheng. Phys. Plasmas, 6, 2847(1999).

    [76] T.Wang et al. Direct laser acceleration of electrons in the plasma bubble by tightly focused laser pulses. Phys. Plasmas, 26, 083101(2019).

    [77] A. V.Arefiev et al. Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in subcritical plasmas. Phys. Plasmas, 23, 056704(2016).

    D. Raffestin, L. Lecherbourg, I. Lantuéjoul, B. Vauzour, P. E. Masson-Laborde, X. Davoine, N. Blanchot, J. L. Dubois, X. Vaisseau, E. d’Humières, L. Gremillet, A. Duval, Ch. Reverdin, B. Rosse, G. Boutoux, J. E. Ducret, Ch. Rousseaux, V. Tikhonchuk, D. Batani. Enhanced ion acceleration using the high-energy petawatt PETAL laser[J]. Matter and Radiation at Extremes, 2021, 6(5): 056901
    Download Citation