• Photonics Research
  • Vol. 10, Issue 12, 2718 (2022)
Baoqing Wang1、2、†, Cuiping Ma2、†, Peng Yu1、6、*, Alexander O. Govorov3, Hongxing Xu4, Wenhao Wang2, Lucas V. Besteiro5, Zhimin Jing2, Peihang Li2, and Zhiming Wang2、7、*
Author Affiliations
  • 1College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
  • 2Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 3Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
  • 4School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan University, Wuhan 430072, China
  • 5CINBIO, Universidade de Vigo, Vigo 36310, Spain
  • 6e-mail:
  • 7e-mail:
  • show less
    DOI: 10.1364/PRJ.473332 Cite this Article Set citation alerts
    Baoqing Wang, Cuiping Ma, Peng Yu, Alexander O. Govorov, Hongxing Xu, Wenhao Wang, Lucas V. Besteiro, Zhimin Jing, Peihang Li, Zhiming Wang. Ultra-broadband nanowire metamaterial absorber[J]. Photonics Research, 2022, 10(12): 2718 Copy Citation Text show less
    References

    [1] P. Yu, L. V. Besteiro, Y. J. Huang, J. Wu, L. Fu, H. H. Tan, C. Jagadish, G. P. Wiederrecht, A. O. Govorov, Z. M. Wang. Broadband metamaterial absorbers. Adv. Opt. Mater., 7, 1800995(2019).

    [2] B. Wang, P. Yu, W. Wang, X. Zhang, H.-C. Kuo, H. Xu, Z. M. Wang. High-Q plasmonic resonances: fundamentals and applications. Adv. Opt. Mater., 9, 2001520(2021).

    [3] R.-H. Fan, B. Xiong, R.-W. Peng, M. Wang. Constructing metastructures with broadband electromagnetic functionality. Adv. Mater., 32, 1904646(2020).

    [4] L. Feng, P. Huo, Y. Liang, T. Xu. Photonic metamaterial absorbers: morphology engineering and interdisciplinary applications. Adv. Mater., 32, 1903787(2020).

    [5] Y. Li, Z. Liu, H. Zhang, P. Tang, B. Wu, G. Liu. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express, 27, 11809-11818(2019).

    [6] L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics, 10, 393-398(2016).

    [7] K. Cui, P. Lemaire, H. Zhao, T. Savas, G. Parsons, A. J. Hart. Tungsten–carbon nanotube composite photonic crystals as thermally stable spectral-selective absorbers and emitters for thermophotovoltaics. Adv. Energy Mater., 8, 1801471(2018).

    [8] B. Wang, W. Wang, E. Ashalley, X. Zhang, P. Yu, H. Xu, Z. M. Wang. Broadband refractory plasmonic absorber without refractory metals for solar energy conversion. J. Phys. D, 54, 094001(2020).

    [9] K.-T. Lin, H. Lin, T. Yang, B. Jia. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun., 11, 1389(2020).

    [10] H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, B. Jia. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics, 13, 270-276(2019).

    [11] J. Wang, Y. Zhu, W. Wang, Y. Li, R. Gao, P. Yu, H. Xu, Z. Wang. Broadband Tamm plasmon-enhanced planar hot-electron photodetector. Nanoscale, 12, 23945-23952(2020).

    [12] A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, E. N. Wang. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol., 9, 126-130(2014).

    [13] C. Ma, P. Yu, W. Wang, Y. Zhu, F. Lin, J. Wang, Z. Jing, X.-T. Kong, P. Li, A. O. Govorov, D. Liu, H. Xu, Z. Wang. Chiral optofluidics with a plasmonic metasurface using the photothermal effect. ACS Nano, 15, 16357-16367(2021).

    [14] P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, P. Wu. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy, 158, 227-235(2020).

    [15] H. Cai, Y. Sun, X. Wang, S. Zhan. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm. Opt. Express, 28, 15347-15359(2020).

    [16] J. Zou, P. Yu, W. Wang, X. Tong, L. Chang, C. Wu, W. Du, H. Ji, Y. Huang, X. Niu, A. O. Govorov, J. Wu, Z. Wang. Broadband mid-infrared perfect absorber using fractal Gosper curve. J. Phys. D, 53, 105106(2019).

    [17] J. Zhou, Z. Liu, G. Liu, P. Pan, X. Liu, C. Tang, Z. Liu, J. Wang. Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics. Opt. Express, 28, 36476-36486(2020).

    [18] Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, W. Yu. Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting. Adv. Opt. Mater., 1, 43-49(2013).

    [19] S. Yue, M. Hou, R. Wang, H. Guo, Y. Hou, M. Li, Z. Zhang, Y. Wang, Z. Zhang. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials. Opt. Express, 28, 31844-31861(2020).

    [20] L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv., 2, e1501227(2016).

    [21] W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, A. V. Kildishev. Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater., 26, 7959-7965(2014).

    [22] T. Ozel, G. R. Bourret, C. A. Mirkin. Coaxial lithography. Nat. Nanotechnol., 10, 319-324(2015).

    [23] F. J. Wendisch, M. S. Saller, A. Eadie, A. Reyer, M. Musso, M. Rey, N. Vogel, O. Diwald, G. R. Bourret. Three-dimensional electrochemical axial lithography on Si micro- and nanowire arrays. Nano Lett., 18, 7343-7349(2018).

    [24] E. D. Palik. Handbook of Optical Constants of Solids, 804(1985).

    [25] M. Querry. Optical Constants, Contractor Report, 418(1985).

    [26] W. Guo, Y. Liu, T. Han. Ultra-broadband infrared metasurface absorber. Opt. Express, 24, 20586-20592(2016).

    [27] Y. Luo, D. Meng, Z. Liang, J. Tao, J. Liang, C. Chen, J. Lai, T. Bourouina, Y. Qin, J. Lv, Y. Zhang. Ultra-broadband metamaterial absorber in long wavelength infrared band based on resonant cavity modes. Opt. Commun., 459, 124948(2020).

    [28] S. Shrestha, Y. Wang, A. C. Overvig, M. Lu, A. Stein, L. D. Negro, N. Yu. Indium tin oxide broadband metasurface absorber. ACS Photon., 5, 3526-3533(2018).

    [29] Y. Luo, Z. Liang, D. Meng, J. Tao, J. Liang, C. Chen, J. Lai, Y. Qin, J. Lv, Y. Zhang. Ultra-broadband and high absorbance metamaterial absorber in long wavelength Infrared based on hybridization of embedded cavity modes. Opt. Commun., 448, 1-9(2019).

    [30] Y. Zhou, Z. Qin, Z. Liang, D. Meng, H. Xu, D. R. Smith, Y. Liu. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci. Appl., 10, 138(2021).

    [31] Y. Zhou, Z. Liang, Z. Qin, E. Hou, X. Shi, Y. Zhang, Y. Xiong, Y. Tang, Y. Fan, F. Yang, J. Liang, C. Chen, J. Lai. Small–sized long wavelength infrared absorber with perfect ultra–broadband absorptivity. Opt. Express, 28, 1279-1290(2020).

    [32] Y. K. Zhong, S. M. Fu, W. Huang, D. Rung, J. Y.-W. Huang, P. Parashar, A. Lin. Polarization-selective ultra-broadband super absorber. Opt. Express, 25, A124-A133(2017).

    [33] Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 12, 1443-1447(2012).

    [34] G. Albrecht, S. Kaiser, H. Giessen, M. Hentschel. Refractory plasmonics without refractory materials. Nano Lett., 17, 6402-6408(2017).

    [35] S. I. Bozhevolnyi, T. Søndergaard. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt. Express, 15, 10869-10877(2007).

    [36] S. Hu, S. Yang, Z. Liu, B. Quan, J. Li, C. Gu. Broadband and polarization-insensitive absorption based on a set of multisized Fabry–Perot-like resonators. J. Phys. Chem. C, 123, 13856-13862(2019).

    [37] S. I. Bozhevolnyi. Effective-index modeling of channel plasmon polaritons. Opt. Express, 14, 9467-9476(2006).

    [38] A. Pors, S. I. Bozhevolnyi. Plasmonic metasurfaces for efficient phase control in reflection. Opt. Express, 21, 27438-27451(2013).

    [39] J. Deng, Y. Su, D. Liu, P. Yang, B. Liu, C. Liu. Nanowire photoelectrochemistry. Chem. Rev., 119, 9221-9259(2019).

    [40] Z. Huang, H. Fang, J. Zhu. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater., 19, 744-748(2007).

    Baoqing Wang, Cuiping Ma, Peng Yu, Alexander O. Govorov, Hongxing Xu, Wenhao Wang, Lucas V. Besteiro, Zhimin Jing, Peihang Li, Zhiming Wang. Ultra-broadband nanowire metamaterial absorber[J]. Photonics Research, 2022, 10(12): 2718
    Download Citation