• Acta Optica Sinica
  • Vol. 35, Issue 12, 1206004 (2015)
Zhu Qingde1, Wang Xunsi1, Zhang Peiqing1, Peng Tao2, Chen Wei3, Nie Qiuhua1, Sun Lihong1, Cheng Ci1, Liu shuo1, Pan Zhanghao1, Liao Fangxing1, Zhang Peiquan1, Liu Zijun1, Dai Shixun1, and Guangming Tao4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4CREOL, The College of Optics & Photonics, University of Central Florida, Orlando, United States
  • show less
    DOI: 10.3788/aos201535.1206004 Cite this Article Set citation alerts
    Zhu Qingde, Wang Xunsi, Zhang Peiqing, Peng Tao, Chen Wei, Nie Qiuhua, Sun Lihong, Cheng Ci, Liu shuo, Pan Zhanghao, Liao Fangxing, Zhang Peiquan, Liu Zijun, Dai Shixun, Guangming Tao. Fabrication and Optical Properties of Chalcogenide As2S3 Suspended-Core Fiber[J]. Acta Optica Sinica, 2015, 35(12): 1206004 Copy Citation Text show less
    References

    [1] M S Liao, C Chaudhari, G S Qin, et al.. Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity[J]. Opt Express, 2009, 17(24): 21608-21614.

    [2] G S Qin, X Yan, C Kito, et al.. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Appl Phys Lett, 2009, 95(16): 1103.

    [3] M Szpulak, S Févrierb. Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing [C]. SPIE, 2009, 7357: 73570F.

    [4] Dai Shixun, Yü Xingyan, Zhang Wei, et al.. Research progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602.

    [5] Yi Changshen, Dai Shixun, Zhang Peiqing, et al.. Design of a novel single-mode large mode area infrared chalcogenide glass photonic crystal fibers[J]. Acta Physica Sinica, 2013, 62(8): 84206.

    [6] M Duhant, W Renard, G Canat, et al.. Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm [J]. Opt Lett, 2011, 36(15): 2859-2861.

    [7] T M Monro, S Warren-Smith, E P Schartner, et al.. Sensing with suspended-core optical fibers[J]. Opt Fiber Technol, 2010, 16(6): 343- 356.

    [8] Liu Jiang, Liu Kun, Shi Hongxing, et al.. High-power all-fiber mid-infrared supercontinuum laser sources[J]. Chinese J Lasers, 2014, 41(9): 0902004.

    [9] I Hartl, X D Li, C Chudoba, et al.. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Opt Lett, 2001, 26(9): 608-610.

    [10] J C Ren, R L Zhou, S L Lou, et al.. Supercontinuum generation in a standard single-mode fiber by a Q-switched Tm, Ho∶YVO4 laser[J]. Chin Opt Lett, 2014, 12(9): 24-28.

    [11] Zhang Bin, Yang Weiqiang, Hou Jing, et al.. All-fiber mid-infrared supercontinuum sources from 1.9 μm to 4.3 μm[J]. Chinese J Lasers, 2013, 40(11): 1102013.

    [12] K Ogusu, J Yamasaki, S Maeda, et al.. Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching [J]. Opt Lett, 2004, 29(3): 265-267.

    [13] L Brilland, F Charpentier, J Troles, et al.. Microstructured chalcogenide fibers for biological and chemical detection: case study: A CO2 sensor[C]. SPIE, 2009, 7503: 750358.

    [14] F Charpentier, V Nazabal, J Troles, et al.. Infrared optical sensor for CO2 detection[C]. SPIE, 2009, 7356: 735610.

    [15] R Frerichs. New optical glasses with good transparency in the infrared[J]. J Opt Soc Am, 1953, 43(12): 1153-1157.

    [16] G Snopatin, M Yu Matveeva, M Churbanov, et al.. Compositional changes in As-S glass-forming melts during vacuum distillation[J]. Inorga Mater, 2005, 41(2): 196-198.

    [17] S D Le, D M Nguyen, M Thual, et al.. Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber [J]. Opt Express, 2011,19 (26): B653-B660.

    [18] I Savelii, O Mouawad, J Fatome, et al.. Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers[J]. Opt Express, 2012, 20(24): 27083-27093.

    [19] W Q Gao, M El Amraoui, M S Liao, et al.. Mid- infrared supercontinuum generation in a suspended- core As2S3 chalcogenide microstructured optical fiber[J]. Opt Express, 2013, 21(8): 9573-9583.

    [20] W Q Gao, Z C Duan, K Asano, et al.. Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber[J]. Appl Phys B, 2014, 116(4): 847-853.

    [21] Xu Huijuan, Wang Xunsi, Nie Qiuhua, et al.. Fabrication and properties of chalcogenide fiber based on a novel extrusion method[J]. Journal of Optoelectronics Laser, 2014, 25(6): 1109-1114.

    [22] Zhu Minming, Wang Xunsi, Xu Huijuan, et al.. Novel Ge-Ga-Te-KBr far-infrared-transmitting chalcogenide glasses system[J]. Acta Photonica Sinica, 2014, 43(6): 53-57.

    [23] P Toupin, L Brilland, G Renversez, et al.. All-solid all-chalcogenide microstructured optical fiber[J]. Opt Express, 2013, 21(12): 14643- 14648.

    [24] S Haxha, H Ademgil. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area[J]. Opt Commun, 2008, 281(2): 278-286.

    [25] R T White, T M Monro. Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers[J]. Opt Lett, 2011, 36(12): 2351-2353.

    [26] Wu Ming, Liu Hairong, Huang Dexiu, et al.. Dispersion property in highly nonlinear photonic crystal fiber[J]. Acta Optica Sinica, 2008, 28(3): 539-542.

    [27] J Limpert, A Liem, M Reich, et al.. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Opt Express, 2004, 12(7): 1313-1319.

    [28] Li Min, Huo Li, Wang Dong, et al.. Supercontinuum generation based on dual-wavelength coherent ultrashort pulses[J]. Acta Optica Sinica, 2015, 35(4): 0406001.

    CLP Journals

    [1] Liu Shuo, Tang Junzhou, Liu Zijun, Jiang Ling, Wu Bo, Mi Nan, Wang Xunsi, Zhao Zheming, Nie Qiuhua, Dai Shixun, Pan Zhanghao. Fabrication and Properties of Low-Loss Chalcogenide Optical Fiber Based on the Extrusion Method[J]. Acta Optica Sinica, 2016, 36(10): 1006002

    [2] Wang Yingying, Dai Shixun, Luo Baohua, Zhang Peiqing, Wang Xunsi, Liu Zijun. Progress in Infrared Supercontinuum Generation in Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(9): 90005

    Zhu Qingde, Wang Xunsi, Zhang Peiqing, Peng Tao, Chen Wei, Nie Qiuhua, Sun Lihong, Cheng Ci, Liu shuo, Pan Zhanghao, Liao Fangxing, Zhang Peiquan, Liu Zijun, Dai Shixun, Guangming Tao. Fabrication and Optical Properties of Chalcogenide As2S3 Suspended-Core Fiber[J]. Acta Optica Sinica, 2015, 35(12): 1206004
    Download Citation