• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516002 (2022)
Guoping Dong1、*, Tianze Wan1, Minbo Wu1, Qiwen Pan1、2, Jianrong Qiu3, and Zhongmin Yang1、2
Author Affiliations
  • 1State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong , China
  • 2School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, Guangdong , China
  • 3College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516002 Cite this Article Set citation alerts
    Guoping Dong, Tianze Wan, Minbo Wu, Qiwen Pan, Jianrong Qiu, Zhongmin Yang. Recent Applications of Glass Genetic Engineering in Laser Glasses and Other Advanced Optical Glasses[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516002 Copy Citation Text show less
    References

    [1] Arbab M, Finley J J. Glass in architecture[J]. International Journal of Applied Glass Science, 1, 118-129(2010).

    [2] Hench L L. The story of bioglass[J]. Journal of Materials Science: Materials in Medicine, 17, 967-978(2006).

    [3] Dymshits O, Shepilov M, Zhilin A. Transparent glass-ceramics for optical applications[J]. MRS Bulletin, 42, 200-205(2017).

    [4] Bolt M. Glass: the eye of science[J]. International Journal of Applied Glass Science, 8, 4-22(2017).

    [5] Wang W, Gu Q, Chen Q P et al. Investigation of PbSe quantum dot-doped glass fibers with broadband mid-infrared emission[J]. Chinese Journal of Lasers, 49, 0101013(2022).

    [6] Morse D L, Evenson J W. Welcome to the glass age[J]. International Journal of Applied Glass Science, 7, 409-412(2016).

    [7] Xu C J, Zhang J Q, Liu M et al. Midinfrared laser in Ho3+-doped ZBYA glass fiber[J]. Chinese Journal of Lasers, 49, 0101016(2022).

    [8] Zhang H, Guo H T, Xu Y T et al. Research progress in chalcogenide glass fibers for infrared laser delivery[J]. Chinese Journal of Lasers, 49, 0101007(2022).

    [9] Jiang Z H, Yang Z M. Progress on research and development of laser glass in China(invited paper)[J]. Chinese Journal of Lasers, 37, 2198-2201(2010).

    [10] Naseer K A, Marimuthu K. The impact of Er/Yb co-doping on the spectroscopic performance of bismuth borophosphate glasses for photonic applications[J]. Vacuum, 183, 109788(2021).

    [11] Shang M M, Li C X, Lin J. How to produce white light in a single-phase host?[J]. Chemical Society Reviews, 43, 1372-1386(2014).

    [12] El-Maaref A A, Badr S, Shaaban K S et al. Optical properties and radiative rates of Nd3+ doped zinc-sodium phosphate glasses[J]. Journal of Rare Earths, 37, 253-259(2019).

    [13] Djamal M, Yuliantini L, Hidayat R et al. Spectroscopic study of Nd3+ ion-doped Zn-Al-Ba borate glasses for NIR emitting device applications[J]. Optical Materials, 107, 110018(2020).

    [14] Zylstra A B, Hurricane O A, Callahan D A et al. Burning plasma achieved in inertial fusion[J]. Nature, 601, 542-548(2022).

    [15] Mauro J C, Allan D C, Potuzak M. Nonequilibrium viscosity of glass[J]. Physical Review B, 80, 094204(2009).

    [16] Zanotto E D, Coutinho F A B. How many non-crystalline solids can be made from all the elements of the periodic table?[J]. Journal of Non-Crystalline Solids, 347, 285-288(2004).

    [17] Xiao X L, Kong D Y, Qiu X Y et al. Shape-memory polymers with adjustable high glass transition temperatures[J]. Macromolecules, 48, 3582-3589(2015).

    [18] Zhang X H. Chalcogenide glass-molds thermal imaging[J]. Laser Focus World, 38, 73(2002).

    [19] Liu H, Fu Z P, Yang K et al. Machine learning for glass science and engineering: a review[J]. Journal of Non-Crystalline Solids, 557, 119419(2021).

    [20] Zhang L Y, Li H, Hu L L et al. Structure modeling of genes in glass: composition-structure-property approach[J]. Journal of Inorganic Materials, 34, 885-892(2019).

    [21] Liu Z K. Basic viewpoint and prospect of material genome[J]. Chinese Science Bulletin, 58, 3618-3622(2013).

    [22] National Research Council, Division on Engineering and Physical Sciences, National Materials Advisory Board et al[M]. Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security(2008).

    [23] Qian G Q, Tang G W, Qian Q et al. Glass genetic engineering[J]. Scientia Sinica (Technologica), 50, 582-592(2020).

    [24] Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel T D et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach[J]. Nature Materials, 15, 1120-1127(2016).

    [25] Khaira G, Doxastakis M, Bowen A et al. Derivation of multiple covarying material and process parameters using physics-based modeling of X-ray data[J]. Macromolecules, 50, 7783-7793(2017).

    [26] Landis D D, Hummelshoj J S, Nestorov S et al. The computational materials repository[J]. Computing in Science & Engineering, 14, 51-57(2012).

    [27] Ball P. Concrete mixing for gorillas[J]. Nature Materials, 14, 472(2015).

    [28] Onbaşlı M C, Tandia A, Mauro J C. Mechanical and compositional design of high-strength corning gorilla® glass[M]. Andreoni W, Yip S. Handbook of materials modeling, 1-23(2018).

    [29] National Institute of Standards and Technology. Materials innovation case study: corning’s gorilla glass 3 for consumer electronics[EB/OL]. https://www.nist.gov/system/files/documents/2018/06/26/materials_innovation_case_study_gorilla_glass_3_020816.pdf

    [30] Anderson P W. Through the glass lightly[J]. Science, 267, 1615-1616(1995).

    [31] Kennedy D, Norman C. What don’t we know?[J]. Science, 309, 75(2005).

    [32] Lebedev A A. Über polymorphismus und das kühlen von glas[J]. Staatl Opt Inst Leningr., 2, 3(1921).

    [33] Wright A C. The great crystallite versus random network controversy: a personal perspective[J]. International Journal of Applied Glass Science, 5, 31-56(2014).

    [34] Zachariasen W H. The atomic arrangement in glass[J]. Journal of the American Chemical Society, 54, 3841-3851(1932).

    [35] Wright A C, Thorpe M F. Eighty years of random networks[J]. Physica Status Solidi (b), 250, 931-936(2013).

    [36] Dietzel A. The cation field strengths and their relation to devitrifying processes, to compound formation and to the melting points of silicates[J]. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 48, 9-23(1942).

    [37] Sun K. Fundamental condition of glass formation[J]. Journal of the American Ceramic Society, 30, 277-281(1947).

    [38] Greaves G N, Fontaine A, Lagarde P et al. Local structure of silicate glasses[J]. Nature, 293, 611-616(1981).

    [39] Greaves G N, Sen S. Inorganic glasses, glass-forming liquids and amorphizing solids[J]. Advances in Physics, 56, 1-166(2007).

    [40] Wang Y, Ren X B, Otsuka K et al. Evidence for broken ergodicity in strain glass[J]. Physical Review B, 76, 132201(2007).

    [41] Buchanan M. Capturing chaos[J]. Nature, 435, 281(2005).

    [42] Bantilan F T,, Palmer R G. Magnetic properties of a model spin glass and the failure of linear response theory[J]. Journal of Physics F: Metal Physics, 11, 261-266(1981).

    [43] Mauro J C, Gupta P K, Loucks R J. Continuously broken ergodicity[J]. The Journal of Chemical Physics, 126, 184511(2007).

    [44] Jones E B, Stevanović V. The glassy solid as a statistical ensemble of crystalline microstates[J]. Npj Computational Materials, 6, 56(2020).

    [45] Mauro J C, Smedskjaer M M. Statistical mechanics of glass[J]. Journal of Non-Crystalline Solids, 396/397, 41-53(2014).

    [46] Li N, Sakidja R, Aryal S et al. Densification of a continuous random network model of amorphous SiO2 glass[J]. Physical Chemistry Chemical Physics: PCCP, 16, 1500-1514(2014).

    [47] Gupta P K. Topologically disordered networks of rigid polytopes: applications to noncrystalline solids and constrained viscous sintering[M]. Thorpe M F, Duxbury P M. Rigidity Theory and Applications, 173-190(2005).

    [48] Zhang Q Y, Zhang W J, Wang W C et al. Calculation of physical properties of glass via the phase diagram approach[J]. Journal of Non-Crystalline Solids, 457, 36-43(2017).

    [49] Jiang Z H, Zhang Q Y. The structure of glass: a phase equilibrium diagram approach[J]. Progress in Materials Science, 61, 144-215(2014).

    [50] Jiang J J[M]. Computational materials science: design practice method(2010).

    [51] Gupta P K, Cooper A R. Topologically disordered networks of rigid polytopes[J]. Journal of Non-Crystalline Solids, 123, 14-21(1990).

    [52] Phillips J C. Topology of covalent non-crystalline solids Ⅰ: short-range order in chalcogenide alloys[J]. Journal of Non-Crystalline Solids, 34, 153-181(1979).

    [53] Phillips J C. Topology of covalent non-crystalline solids Ⅱ: medium-range order in chalcogenide alloys and A–Si(Ge)[J]. Journal of Non-Crystalline Solids, 43, 37-77(1981).

    [54] Bauchy M. Deciphering the atomic genome of glasses by topological constraint theory and molecular dynamics: a review[J]. Computational Materials Science, 159, 95-102(2019).

    [55] Mauro J. Topological constraint theory of glass[J]. American Ceramic Society Bulletin, 90, 31-37(2011).

    [56] Zhang Q Y, Wang W C, Jiang Z H. What is the nature of glassy state?[J]. Chinese Science Bulletin, 61, 1407-1413(2016).

    [57] Jiang Z H, Hu L L. Phase diagram structure model of glass[J]. Science in China (Series E), 26, 395-404(1996).

    [58] Zhang Q Y, Jiang Z H[M]. Phase diagram model of glass structure(2020).

    [59] Zanotto E D, Mauro J C. The glassy state of matter: its definition and ultimate fate[J]. Journal of Non-Crystalline Solids, 471, 490-495(2017).

    [60] Boulesteix A L, Schmid M. Machine learning versus statistical modeling[J]. Biometrical Journal. Biometrische Zeitschrift, 56, 588-593(2014).

    [61] Fluegel A. Statistical regression modeling of glass properties: a tutorial[J]. Glass Technology, 50, 25-46(2009).

    [62] de Pablo J J, Jackson N E, Webb M A et al. New frontiers for the materials genome initiative[J]. npj Computational Materials, 5, 41(2019).

    [63] Ravinder R, Sridhara K H, Bishnoi S et al. Deep learning aided rational design of oxide glasses[J]. Materials Horizons, 7, 1819-1827(2020).

    [64] Zaki M, Venugopal V, Ravinder R et al. Unveiling the glass veil: elucidating the optical properties in glasses with interpretable machine learning[EB/OL]. https://arxiv.org/abs/2103.03633

    [65] Cassar D R, Santos G G, Zanotto E D. Designing optical glasses by machine learning coupled with a genetic algorithm[J]. Ceramics International, 47, 10555-10564(2021).

    [66] Ravinder, Venugopal V, Bishnoi S et al. Artificial intelligence and machine learning in glass science and technology: 21 challenges for the 21st century[J]. International Journal of Applied Glass Science, 12, 277-292(2021).

    [67] Gilpin L H, Bau D, Yuan B Z et al. Explaining explanations: an overview of interpretability of machine learning[C], 80-89(2018).

    [68] Anoop Krishnan N M, Mangalathu S, Smedskjaer M M et al. Predicting the dissolution kinetics of silicate glasses using machine learning[J]. Journal of Non-Crystalline Solids, 487, 37-45(2018).

    [69] Xie J X, Su Y J, Xue D Z et al. Machine learning for materials research and development[J]. Acta Metallurgica Sinica, 57, 1343-1361(2021).

    [71] Bergerhoff G, Hundt R, Sievers R et al. The inorganic crystal structure data base[J]. Journal of Chemical Information and Computer Sciences, 23, 66-69(1983).

    [72] Jain A, Ong S P, Hautier G et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation[J]. APL Materials, 1, 011002(2013).

    [75] Li Z X, Zhang N, Xiong B et al. Materials science database in material research and development: recent applications and prospects[J]. Frontiers of Data & Computing, 2, 78-90(2020).

    [76] Eitel W, Pirani M S, Scheel K[M]. Glastechnische tabellen: physikalische und chemische Konstanten der Gläser(1932).

    [77] Levin E M[M]. Phase diagrams for ceramists(1956).

    [78] The American Ceramic Society. Phase equilibrium diagram[EB/OL]. https://ceramics.org/publications-resources/phase-equilibrium-diagrams

    [79] EPAMSystems Inc. SciGlass[EB/OL]. https://github.com/epam/SciGlass

    [80] New Glass Forum. INTERGLAD Ver. 8[EB/OL]. http://www.newglass.jp/interglad_n/

    [81] Yang K, Xu X Y, Yang B et al. Predicting the Young’s modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning[J]. Scientific Reports, 9, 8739(2019).

    [82] Mauro J C, Tandia A, Vargheese K D et al. Accelerating the design of functional glasses through modeling[J]. Chemistry of Materials, 28, 4267-4277(2016).

    [83] Mauro J C. Decoding the glass genome[J]. Current Opinion in Solid State and Materials Science, 22, 58-64(2018).

    [84] Musgraves J D, Hu J J, Calvez L[M]. Springer handbook of glass(2019).

    [85] Massobrio C, Du J C, Bernasconi M et al[M]. Molecular dynamics simulations of disordered materials(2015).

    [86] Varshneya A K, Mauro J C[M]. Fundamentals of inorganic glasses(2013).

    [87] Chen S, Zhang W N, Teng L M et al. Design, simulation, elaboration and luminescence of Tb3+-doped Ba0.84Gd0.16F2.16 fluoroaluminosilicate scintillating glass ceramics[J]. Journal of the European Ceramic Society, 41, 6722-6728(2021).

    [88] Karelson M, Lobanov V S, Katritzky A R. Quantum-chemical descriptors in QSAR/QSPR studies[J]. Chemical Reviews, 96, 1027-1044(1996).

    [89] Kuo P H, Du J C. Atomistic understanding of ion exchange strengthening of boroaluminosilicate glasses: insights from molecular dynamics simulations and QSPR analysis[J]. The Journal of Physical Chemistry B, 126, 2060-2072(2022).

    [90] Lu X N, Deng L, Gin S et al. Quantitative structure-property relationship (QSPR) analysis of ZrO2-containing soda-lime borosilicate glasses[J]. The Journal of Physical Chemistry B, 123, 1412-1422(2019).

    [91] Du J C, Cormack A N[M]. Atomistic Simulations of Glasses: Fundamentals and Applications(2022).

    [92] Gong H M, Song B, Yang Y T et al. Ab initio molecular dynamics simulation of the structural and electronic properties of aluminoborosilicate glass[J]. Journal of the American Ceramic Society, 104, 3198-3211(2021).

    [93] Liu H, Zhang T, Anoop Krishnan N M et al. Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning[J]. Npj Materials Degradation, 3, 32(2019).

    [94] Cassar D R, Mastelini S M, Botari T et al. Predicting and interpreting oxide glass properties by machine learning using large datasets[J]. Ceramics International, 47, 23958-23972(2021).

    [95] Probert M. Electronic structure: basic theory and practical methods, 2nd edition[J]. Contemporary Physics, 61, 312(2020).

    [96] Lundberg S, Lee S I. A unified approach to interpreting model predictions[EB/OL]. https://arxiv.org/abs/1705.07874

    [97] Zhou S F, Guo Q B, Inoue H et al. Topological engineering of glass for modulating chemical state of dopants[J]. Advanced Materials, 26, 7966-7972(2014).

    [98] Cao W Q, Huang F F, Wang Z et al. Controllable structural tailoring for enhanced luminescence in highly Er3+-doped germanosilicate glasses[J]. Optics Letters, 43, 3281-3284(2018).

    [99] Yang Y J, Homma O, Urata S et al. Topological pruning enables ultra-low Rayleigh scattering in pressure-quenched silica glass[J]. Npj Computational Materials, 6, 139(2020).

    [100] Qian G Q, Tang G W, Qian Q et al. Quantitative prediction of the glass-forming region and luminescence properties in Tm3+-doped germanate laser glasses[J]. Journal of the American Ceramic Society, 103, 4203-4213(2020).

    [101] Koponen J J, Söderlund M J, Hoffman H J et al. Measuring photodarkening from single-mode ytterbium doped silica fibers[J]. Optics Express, 14, 11539-11544(2006).

    [102] Liu C P, Liao L, Li J Y. Research progress on photodarkening of Yb-doped fiber lasers[J]. Laser & Optoelectronics Progress, 53, 070002(2016).

    [103] Sun S H, Jia B N, Han L H et al. Influence of ring structures on optical absorption of trivalent ytterbium in Yb-doped silica fiber[J]. Journal of Luminescence, 239, 118370(2021).

    [104] Zhang L Y, Li H, Hu L L. Statistical structure analysis of GeO2 modified Yb3+:phosphate glasses based on Raman and FTIR study[J]. Journal of Alloys and Compounds, 698, 103-113(2017).

    [105] Li W K, Zhao X J, Liu C et al. Ab initio molecular dynamics of CdSe quantum-dot-doped glasses[J]. Journal of the American Chemical Society, 142, 3905-3912(2020).

    [106] Haumesser P H, Gaumé R, Viana B et al. Spectroscopic and crystal-field analysis of new Yb-doped laser materials[J]. Journal of Physics: Condensed Matter, 13, 5427-5447(2001).

    [107] Yang B H, Liu X Q, Wang X et al. Compositional dependence of room-temperature Stark splitting of Yb3+ in several popular glass systems[J]. Optics Letters, 39, 1772-1774(2014).

    [108] Yan S S, Yue Y, Wang Y J et al. Effect of GeO2 on structure and properties of Yb∶phosphate glass[J]. Journal of Non-Crystalline Solids, 520, 119455(2019).

    [109] Zhang L Y, Li H, Hu L L. Statistical approach to modeling relationships of composition-structure-property I: alkaline earth phosphate glasses[J]. Journal of Alloys and Compounds, 734, 163-171(2018).

    [110] Zhang L Y, Xu Y C, Li H. “Gene” modeling approach to new glass design[J]. International Journal of Applied Glass Science, 11, 294-306(2020).

    [111] Liu W X, Yan S S, Wang Y J et al. Composition-structure-property modeling for Nd3+ doped alkali-phosphate laser glass[J]. Optical Materials, 102, 109778(2020).

    [112] Tokuda Y, Fujisawa M, Packwood D M et al. Data-driven design of glasses with desirable optical properties using statistical regression[J]. AIP Advances, 10, 105110(2020).

    [113] Yang Y F, Guo Y L, Huang Z P et al. Research on the milling tool wear and life prediction by establishing an integrated predictive model[J]. Measurement, 145, 178-189(2019).

    [114] Altay O, Gurgenc T, Ulas M et al. Prediction of wear loss quantities of Ferro-alloy coating using different machine learning algorithms[J]. Friction, 8, 107-114(2020).

    [115] Qiao Q, He H T, Yu J X et al. Applicability of machine learning on predicting the mechanochemical wear of the borosilicate and phosphate glass[J]. Wear, 476, 203721(2021).

    [116] McGahay V, Tomozawa M. Phase separation in rare-earth-doped SiO2 glasses[J]. Journal of Non-Crystalline Solids, 159, 246-252(1993).

    [117] Turlier J, Fourmont J, Bidault X et al. In situ formation of rare-earth-doped nanoparticles in a silica matrix from Molecular Dynamics simulations[J]. Ceramics International, 46, 26264-26272(2020).

    [118] Park B, Li H, Corrales L R. Molecular dynamics simulation of La2O3-Na2O-SiO2 glasses. Ⅰ. The structural role of La3+ cations[J]. Journal of Non-Crystalline Solids, 297, 220-238(2002).

    [119] Park B, Corrales L R. Molecular dynamics simulation of La2O3-Na2O-SiO2 glasses. Ⅱ. The clustering of La3+ cations[J]. Journal of Non-Crystalline Solids, 311, 107-117(2002).

    [120] Corrales L R, Park B. Molecular dynamics simulation of La2O3-Na2O-SiO2 glasses. Ⅲ. The driving forces of clustering[J]. Journal of Non-Crystalline Solids, 311, 118-129(2002).

    [121] Vienne G G, Caplen J E, Dong L et al. Fabrication and characterization of Yb3+∶Er3+ phosphosilicate fibers for lasers[J]. Journal of Lightwave Technology, 16, 1990-2001(1998).

    [122] Du J C, Cormack A N. Structure study of rare earth doped vitreous silica by molecular dynamics simulation[J]. Radiation Effects and Defects in Solids, 157, 789-794(2002).

    [123] Nakazawa M. Evolution of EDFA from single-core to multi-core and related recent progress in optical communication[J]. Optical Review, 21, 862-874(2014).

    [124] Hoppe U. Rare-earth site distributions in R(PO3)3(R=La, Nd, Er, Yb) metaphosphate glasses by reverse Monte Carlo simulations[J]. Journal of Physics: Condensed Matter, 20, 165206(2008).

    [125] Mountjoy G. Molecular dynamics, diffraction and EXAFS of rare earth phosphate glasses compared with predictions based on bond valence[J]. Journal of Non-Crystalline Solids, 353, 2029-2034(2007).

    [126] Dong H H. Study on the spectral performance of Yb3+ doped silica fiber for 1018 nm tandem-pumping technology[D](2021).

    [127] Shapere D. The structure of scientific revolutions[J]. The Philosophical Review, 73, 383(1964).

    [128] Hey A J G, Tansley S, Tolle K M[M]. The fourth paradigm: data-intensive scientific discovery(2009).

    [129] Kuhn T S[M]. The structure of scientific revolutions(1970).

    [130] Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science[J]. APL Materials, 4, 053208(2016).

    [131] Mauro J C, Philip C S, Vaughn D J et al. Glass science in the United States: current status and future directions[J]. International Journal of Applied Glass Science, 5, 2-15(2014).

    Guoping Dong, Tianze Wan, Minbo Wu, Qiwen Pan, Jianrong Qiu, Zhongmin Yang. Recent Applications of Glass Genetic Engineering in Laser Glasses and Other Advanced Optical Glasses[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516002
    Download Citation