• Photonic Sensors
  • Vol. 14, Issue 2, 240203 (2024)
Jieyuan TANG1,2, Zhibin LI1,2, Mengyuan XIE1,2, Yunhan LUO1,2..., Jianhui YU1,2, Guojie CHEN3,4,* and Zhe CHEN2,5|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
  • 2Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
  • 3School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China
  • 4Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China
  • 5JiHua Laboratory, Foshan 528200, China
  • show less
    DOI: 10.1007/s13320-024-0707-3 Cite this Article
    Jieyuan TANG, Zhibin LI, Mengyuan XIE, Yunhan LUO, Jianhui YU, Guojie CHEN, Zhe CHEN. Liquid Crystal Based Label-Free Optical Sensors for Biochemical Application[J]. Photonic Sensors, 2024, 14(2): 240203 Copy Citation Text show less
    References

    [1] J. L. Fergason, “Liquid crystals,” Scientific American, 1964, 211(2): 76–85.

    [2] Y. Li, Z. Yin, and D. Luo, “Pre-compressed polymer cholesteric liquid crystal based optical fiber VOC sensor with high stability and a wide detection range,” Optics Express, 2022, 30(18): 32822–32832.

    [3] M. K. Sadigh, P. Naziri, M. S. Zakerhamidi, A. Ranjkesh, and T. H. Yoon, “Temperature dependent features of polymer stabilized cholesteric liquid crystals based on selected liquid crystal characteristics,” Optick, 2021, 230(3): 166354.

    [4] J. Hu, Y. Chen, Z. Ma, L. Zeng, D. Zhou, Z. Peng, et al., “Temperature-compensated optical fiber sensor for volatile organic compound gas detection based on cholesteric liquid crystal,” Optics Letters, 2021, 46(14): 3324–3327.

    [5] Y. Wang, Z. Ma, Z. Li, Y. Zhang, H. Zhang, G. Zheng, et al., “Research on a novel temperature indicating device based on Bragg reflection waveguide of planar texture cholesteric liquid crystal layer,” Molecular Crystals and Liquid Crystals, 2022, 739(1): 78–87.

    [6] V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science, 1998, 279(3): 2077–2080.

    [7] X. Zhan, Y. Liu, K. L. Yang, and D. Luo, “State-of-the-art development in liquid crystal biochemical sensors,” Biosensors, 2022, 12(8): 577.

    [8] J. Prakash, A. Parveen, Y. K. Mishra, and A. Kaushik, “Nanotechnology-assisted liquid crystals-based biosensors: towards fundamental to advanced applications,” Biosensors and Bioelectronics, 2020, 168: 112562.

    [9] S. A. Oladepo, “Development and application of liquid crystals as stimuli-responsive sensors,” Molecules, 2022, 27(4): 1453.

    [10] M. Khan, S. Liu, L. Qi, C. Ma, S. Munir, L. Yu, et al., “Liquid crystal-based sensors for the detection of biomarkers at the aqueous/LC interface,” Trac-Trends in Analytical Chemistry, 2021, 144: 116434.

    [11] R. Xie, N. Li, Z. Li, J. Chen, K. Li, Q. He, et al., “Liquid crystal droplet-based biosensors: promising for point-of-care testing,” Biosensors, 2022, 12(9): 758.

    [12] H. Wang, T. Xu, Y. Fu, Z. Wang, M. S. Leeson, J. Jiang, et al., “Liquid crystal biosensors: principles, structure and applications,” Biosensors, 2022, 12(8): 639.

    [13] Z. An and C. Jang, “Simple and label-free liquid crystal-based optical sensor for highly sensitive and selective endotoxin detection by aptamer binding and separation,” Chemistryselect, 2019, 4(4): 1416–1422.

    [14] C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Analytical Chemistry, 2015, 87(8): 4546–4551.

    [15] D. Das, S. Sidiq, and S. K. Pal, “Design of bio-molecular interfaces using liquid crystals demonstrating endotoxin interactions with bacterial cell wall components,” RSC Advances, 2015, 5(81): 66476–66486.

    [16] J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets,” Langmuir, 2009, 25(16): 9016–9024.

    [17] H. Zhang, Z. Miao, and W. Shen, “Development of polymer-dispersed liquid crystals: From mode innovation to applications,” Composites Part A, 2022, 163: 107234.

    [18] C. K. Chang, C. M. W. Bastiaansen, D. J. Broer, and H. L. Kuo, “Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks,” Advanced Functional Materials, 2012, 22(13): 2855–2859.

    [19] C. K. Chang, C. W. M. Bastiaansen, D. J. Broer, and H. L. Kuo, “Discrimination of alcohol molecules using hydrogen-bridged cholesteric polymer networks,” Macromolecules, 2012, 45(11): 4550–4555.

    [20] X. Su, J. Xu, J. Zhang, C. Luan, and W. Huo, “Application progress of nano-signa amplification technology in liquid crystalbiosensor,” Chinese Journal of Analysis Laboratory, 2019, 38(11): 1359–1365.

    [21] C. K. Chang, H. L. Kuo, K. T. Tang, and S. W. Chiu, “Optical detection of organic vapors using cholesteric liquid crystals,” Applied Physics Letters, 2011, 99(7): 073504.

    [22] R. Duan, Y. Li, H. Li, and J. Yang, “Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets,” Biomedical Optics Express, 2019, 10(12): 6073–6083.

    [23] J. Tang, Z. Li, M. Xie, Y. Zhang, W. Long, S. Long, et al., “Optical fiber bio-sensor for phospholipase using liquid crystal,” Biosensors and Bioelectronics, 2020, 170: 112547.

    [24] Y. Li, Y. Chen, D. Yi, Y. Du, W. Luo, X. Hong, et al., “A self-assembled fiber Mach-Zehnder interferometer based on liquid crystals,” Journal of Materials Chemistry, 2020, 8(32): 11153–11159.

    [25] J. Hu, D. Fu, C. Xia, S. Long, C. Lu, W. Sun, et al., “Fiber Mach-Zehnder-interferometer-based liquid crystal biosensor for detecting enzymatic reactions of penicillinase,” Applied Optics, 2019, 58(17): 4806–4811.

    [26] J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces ofliquidcrystals,” Science, 2003, 302(5653): 2094–2097.

    [27] D. K. Nguyen and C. H. Jang, “A cationic surfactant-decorated liquid crystal-based aptasensor for label-free detection of malathion pesticides in environmental samples,” Biosensors, 2021, 11(3): 92.

    [28] X. Niu, D. Luo, R. Chen, F. Wang, X. Sun, and H. Dai, “Optical biosensor based on liquid crystal droplets for detection of cholic acid,” Optics Communications, 2016, 381: 286–291.

    [29] P. Bao, D. A. Paterson, P. L. Harrison, K. Miller, S. Peyman, J. C. Jones, et al., “Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides,” Lab on a Chip, 2019, 19(6): 1082–1089.

    [30] I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science, 2011, 332(6035): 1297–1300.

    [31] C. G. Reyes, A. Sharma, and J. P. F. Lagerwall, “Non-electronic gas sensors from electrospun mats of liquid crystal core fibers for detecting volatile organic compounds at room temperature,” Liquid Crystals, 2016, 43(13–15): 1986–2001.

    [32] K. Schelski, C. G. Reyes, L. Pschyklenk, P. M. Kaul, and J. P. F. Lagerwall, “Quantitative volatile organic compound sensing with liquid crystal core fibers,” Cell Reports Physical Science, 2021, 2(12): 100661.

    [33] P. C. Wu, C. P. Pai, M. J. Lee, and W. Lee, “A single-substrate biosensor with spin-coated liquid crystal film for simple, sensitive and label-free protein detection,” Biosensors, 2021, 11(10): 374.

    [34] D. S. Millera and N. L. Abbott, “Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets,” Soft Matter, 2013, 9(2): 374–382.

    [35] J. Y. Kwon, M. Khan, and S. Y. Park, “pH-responsive liquid crystal double emulsion droplets prepared using microfluidics,” RSC Advances, 2016, 6(61): 55976–55983.

    [36] G. Durey, Y. Ishii, and T. Lopez-Leon, “Temperature-driven anchoring transitions at liquid crystal/water interfaces,” Langmuir, 2020, 36(32): 9368–9376.

    [37] M. A. B. Pantoja and N. L. Abbott, “Surface-controlled orientational transitions in elastically strained films of liquid crystal that are triggered by vapors of toluene,” ACS Applied Materials & Interfaces, 2016, 8(20): 13114–13122.

    [38] H. J. Kim and C. H. Jang, “Liquid crystal-based capillary sensory platform for the detection of bile acids,” Chemistry and Physics of Lipids, 2017, 204: 10–14.

    [39] H. J. Kim and C. H. Jang, “Micro-capillary sensor for imaging trypsin activity using confined nematic liquid crystals,” Journal of Molecular Liquids, 2016, 222: 596–600.

    [40] T. K. H. Pham and C. H. Jang, “Simple, sensitive technique for α-amylase detection facilitated by liquid crystal-based microcapillary sensors,” Microchemical Journal, 2021, 162: 105864.

    [41] J. W. Huang, H. Hisamoto, and C. H. Chen, “Quantitative analysis of liquid crystal-based immunoassay using rectangular capillaries as sensing platform,” Optics Express, 2019, 27(12): 17080–17090.

    [42] X. Wang, E. Bukusoglu, and N. L. Abbott, “A practical guide to the preparation of liquid crystal-templated microparticles,” Chemistry of Materials, 2017, 29(1): 53–61.

    [43] V. Tomar, S. I. Hernandez, N. L. Abbott, J. P. Hernandez-Ortiz, and J. J. de Pablo, “Morphological transitions in liquid crystal nanodroplets,” Soft Matter, 2012, 8(33): 8679–8689.

    [44] D. K. Nguyen and C. H. Jang, “Simple and label-free detection of carboxylesterase and its inhibitors using a liquid crystal droplet sensing platform,” Micromachines, 2022, 13(3): 490.

    [45] J. Liu, T. Wang, J. Xiao, and L. Yu, “Portable liquid crystal droplet array in the capillary for rapid and sensitive detection of organophosphate nerve agents,” Microchemical Journal, 2022, 178: 107334.

    [46] F. Yin, S. Cheng , S. Liu, C. Ma, L. Wang, R. Zhao, et al., “A portable digital optical kanamycin sensor developed by surface-anchored liquid crystal droplets,” Journal of Hazardous Materials, 2021, 420: 126601.

    [47] S. Cheng, M. Khan, F. Yin, C. Ma, J. Yuan, T. Jiang, et al., “Surface-anchored liquid crystal droplets for the semi-quantitative detection of aflatoxin B1 in food samples,” Food Chemistry, 2022, 390: 133202.

    [48] S. Xie, R. He, Q. Zhu, M. Jin, R. Yang, S. Shen, et al., “Label-free optical sensor based on liquid crystal sessile droplet array for penicillin G determination,” Colloids and Surface A: Physicochemical and Engineering Aspects, 2022, 644: 128728.

    [49] J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets,” Langmuir, 2009, 25(16): 9016–9024.

    [50] J. Deng, D. Han, and J. Yang, “Applications of microfluidics in liquid crystal-based biosensors,” Biosensors, 2021, 11(10): 385.

    [51] O. H. Pineres-Quinones, D. M. Lynn, and C. Acevedo-Vélez, “Environmentally responsive emulsions of thermotropic liquid crystals with exceptional long-term stability and enhanced sensitivity to aqueous amphiphiles,” Langmuir, 2022, 38(3): 957–967.

    [52] J. Deng, X. Wang, W. Liang, D. Richardsonb, Q. Luc, and J. Fang, “Surface modified liquid crystal droplets as an optical probe for the detection of bile acids in microfluidic channels,” Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2018, 542: 52–58.

    [53] G. Zhang, A. Zhu, S. Wang, Q. Chen, B. Liu, J. Zhou, et al., “Stabilizing liquid crystal droplets with hydrogel films and its application in monitoring adenosine triphosphate,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130122.

    [54] Z. Ma, J. Sun, S. Zhou, W. Shan, Y. Yan, and Y. Liu, “Compact fiber sensor for pH measurement based on the composite effect of hydrogel deformation and LC refractive index variation,” Optics Letters, 2023, 48(1): 139–142.

    [55] L. Liu, W. Li, X. Wang, Y. Xie, Y. Li, and Z. Wu, “Functional liquid crystal core/hydrogel shell microcapsules for monitoring live cells in a 3D microenvironment,” Analytical Chemistry, 2023, 95(5): 2750–2756.

    [56] L. L. Teresa and F. N. Alberto, “Drops and shells of liquid crystal,” Colloid Polymer Science, 2011, 289(4): 345–359.

    [57] I. S. Heo and S. Y. Park, “Smart shell membrane prepared by microfluidics with reactive nematic liquid crystal mixture,” Sensors and Actuators B–Chemical, 2017, 251: 658–666.

    [58] J. Wang, A. Jákli, and J. L. West, “Liquid crystal/polymer fiber mats as sensitive chemical sensors,” Journal of Molecular Liquids, 2018, 267: 490–495.

    [59] S. R. Kim, R. R. Shah, and N. L. Abbott, “Orientations of liquid crystals on mechanically rubbed films of bovine serum albumin: a possible substrate for biomolecular assays based on liquid crystals,” Analytical Chemistry, 2000, 72(19): 4646–4653.

    [60] R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,”Science, 2001, 293(5533): 1296–1299.

    [61] M. Skarabot, E. Osmanagic, and I. Musevic, “Surface anchoring of nematic liquid crystal 80 CB on a DMOAP-silanated glass surface,” Liquid Crystals, 2006, 33(5): 581–585.

    [62] H. Lin, L. Ke, H. C. Liang, and W. Kuo, “Tunable pretilt angle based on gelator-doped planar liquid crystal cells,” Liquid Crystals, 2021, 48: 1448–1456.

    [63] T. K. Chang, M. J. Lee, and W. Lee, “Quantitative biosensing based on a liquid crystal marginally aligned by the PVA/DMOAP composite for optical signal amplification,” Biosensors, 2022, 12(4): 218.

    [64] M. J. Lee, F. F. Duan, P. C. Wu, and L. Wei, “Liquid crystal-photopolymer composite films for label-free single-substrate protein quantitation and immunoassay,” Biomedical Optics Express, 2020, 11(9): 4915–4927.

    [65] T. K. Chang, P. C. Tung, M. J. Lee, and W. Lee, “A liquid-crystal aptasensing platform for label-free detection of a single circulating tumor cell,” Biosensors and Bioelectronics, 2022, 216: 114607.

    [66] X. Niu, Y. Liu, F. Wang, and D. Luo, “Highly sensitive and selective optical sensor for lead ion detection based on liquid crystal decorated with DNAzyme,” Optics Express, 2019, 27(21): 30421–30428.

    [67] Z. Khoshbin, H. Zahraee, J. Zamanian, A. Verdian, M. Ramezani, M. Alibolandi, et al., “A label-free liquid crystal-assisted aptasensor for trace level detection of tobramycin in milk and chicken egg samples,”Analytica Chimica Acta, 2022, 1236(15): 340588.

    [68] M. L. Bungabong, P. B. Ong, and K. L. Yang, “Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor,” Sensors and Actuators B–Chemical, 2010, 148(2): 420–426.

    [69] G. Li, B. Gao, M. Yang, L. C. Chen, and X. L. Xiong, “Homeotropic orientation behavior of nematic liquid crystals induced by copper ions,” Colloids and Surfaces B–Biointerfaces, 2015, 130: 287–291.

    [70] K. L. Yang, K. Cadwell, and N. L. Abbott, “Use of self-assembled monolayers, metal ions and smectic liquid crystals to detect organophosphonates,” Sensors and Actuators B–Chemical, 2005, 104(1): 50–56.

    [71] J. M. Brake, A. D. Mezera, and N. L. Abbott, “Effect of surfactant structure on the orientation of liquid crystals at aqueous-liquid crystal interfaces,” Langmuir, 2003, 19(16): 6436–6442.

    [72] S. Lu, Y. Guo, L. Qi, Q. Hu, and L. Yu, “Highly sensitive and label-free detection of catalase by a H2O2-responsive liquid crystal sensing platform,” Sensors and Actuators B–Chemical, 2021, 344: 130279.

    [73] L. Zhou, Q. Kang, and M. Fang, “Label-free, rapid, and sensitive detection of carboxylesterase using surfactant-doped liquid crystal sensor,” Journal of Molecular Liquids, 2019, 296: 111921.

    [74] M. Devi, I. Verma, and S. K. Pal, “Distinct interfacial ordering of liquid crystals observed by protein-lipid interactions that enabled the label-free sensing of cytoplasmic protein at the liquid crystal-aqueous interface,” Analyst, 2021, 146(23): 7152–7159.

    [75] I. Verma, S. Sidiq, and S. K. Pal, “Protein triggered ordering transitions in poly (L-lysine)-coated liquid crystal emulsion droplets,” Liquid Crystals, 2019, 46(9): 1318–1326.

    [76] X. Yang and Z. Yang, “Simple and rapid detection of ibuprofen-a typical pharmaceuticals and personal care products – by a liquid crystal aptasensor,” Langmuir, 2022, 38(1): 282–288.

    [77] A. D. Price and D. K. Schwartz. “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” Journal of the American Chemical Society, 2008, 130(26): 8188–8194.

    [78] M. Khan, A. R. Khan, J. H. Shin, and S. Y. Park, “A liquid-crystal based DNA biosensor for pathogen detection ion,” Scientific Reports, 2016, 6: 22676.

    [79] Y. Wang, Q. Hu, Y. Guo, and L. Yu, “A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor,” Biosensors & Bioelectronics, 2015, 72: 25–30.

    [80] H. Ma, S. Lu, Q. Xie, T. Wang, H. Lu, and L.Yu,“A stable liquid crystals sensing platform decorated with cationic surfactant for detecting thrombin,” Microchemical Journal, 2021, 170: 106698.

    [81] J. Ping, L. Qi, Q. Wang, S. Liu, Y. Jiang, L. Yu, et al., “An integrated liquid crystal sensing device assisted by the surfactant-embedded smart hydrogel,” Biosensors & Bioelectronics, 2021, 187: 113313.

    [82] H. Ma, Q. Kang, T. Wang, and L. Yu, “A liquid crystals-based sensing platform for detection of α-amylase coupled with destruction of host-guest interaction,” Colloids and Surfaces B–Biointerfaces, 2019, 173: 616-622.

    [83] K. N. Duy and C. H. Jang, “A label-free liquid crystal biosensor based on specific DNA aptamer probes for sensitive detection of amoxicillin antibiotic,” Micromachines, 2021, 12(4): 370.

    [84] Y. Wang, B. Wang, X. Xiong, and S. Deng, “A self-oriented beacon liquid crystal assay for kanamycin detection with AuNPs signal enhancement,” Analytical Methods, 2022, 14(4): 410–416.

    [85] Q. Z. Hu and C. H. Jang, “Using liquid crystals for the real-time detection of urease at aqueous/liquid crystal interfaces,” Journal of Materials Science, 2012, 47(2): 969–975.

    [86] Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, et al., “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sensors and Actuators B–Chemical, 2018, 258: 1090–1098.

    [87] X. Bi, D. Hartono, and K. L. Yang, “Real-time liquid crystal pH sensor for monitoring enzymatic activities of penicillinase,” Advanced Functional Materials, 2009, 19(23): 3760–3765.

    [88] M. Sundas, I. K. Kang, and S. Y.Park, “Polyelectrolytes functionalized nematic liquid crystal-based biosensors: an overview,” Trends in Analytical Chemistry, 2016, 83: 80–94.

    [89] T. Bera and J. Fang, “Polyelectrolyte-coated liquid crystal droplets for detecting charged macromolecules,” Journal Materials Chemistry, 2012, 22(14): 6807–6812.

    [90] D. H. Yeo and S. Y. Park, “Liquid-crystal-based biosensor for detecting Ca2+ in human saliva,” Journal of Industrial and Engineering Chemistry, 2019, 74: 193–198.

    [91] M. Khan and S. Y. Park, “Specific detection of avidin-biotin binding using liquid crystal droplets,” Colloids and Surfaces B–Biointerfaces, 2015, 127: 241–246.

    [92] C. S. Park, K. Iwabata, U. Sridhar, M. Tsuei, K. Singh, Y. K. Kim, et al., “A new strategy for reporting specific protein binding events at aqueous-liquid crystal interfaces in the presence of non-specific proteins,” ACS Applied Materials Interfaces, 2020, 12(7): 7869–7878.

    [93] Y. S. Choi, Y. J. Lee, H. J. Kwon, and S. D. Lee, “Optical detection of the ligand-receptor binding by anchoring transitions of liquid crystals,” Materials Science and Engineering: C, 2004, 24(1–2): 237–240.

    [94] N. A. Lockwood, J. K. Gupta, and N. L. Abbott, “Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases,” Surface Science Reports, 2008, 63(6): 255–293.

    [95] N. A. Lockwood and N. L. Abbott, “Self-assembly of surfactants and phospholipids at interfaces between aqueous phases and thermotropic liquid crystals,” Current Opinion in Colloid & Interface Science, 2005, 10(2–3): 111–120.

    [96] X. Wang, Crystal Optics. Nanjing: Nanjing University Press, 2014.

    [97] J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir, 2005, 21(6): 2218–2228.

    [98] X. Su, J. Xu, J. Zhang, D. Yang, W. Huo, and C. He, “Detection of Cecropin B by liquid-crystal biosensor based on AuNPs signal amplification,” Liquid Crystals, 2020, 47(12): 1794–1802.

    [99] H. Liu, X. Su, J. Zhang, J. Xu, D. Yang, and Q. Chen, “Highly sensitive and rapid detection of protein kinase C based on liquid crystal biosensor,” Colloids and Surfaces A–Physicochemical and Engineering Aspects, 2021, 628: 127346.

    [100] L. Qi, S. Liu, Y. Jiang, J. Lin, L. Yu, and Q. Hu, “Simultaneous detection of multiple tumor markers in blood by functional liquid crystal sensors assisted with target-induced dissociation of aptamer,” Analytical Chemistry, 2020, 92(5): 3867–3873.

    [101] S. Cheng, M. Khan, F. Yin, W. Wu, T. Sun, Q. Hu, et al., “Liquid crystal-based sensitive and selective detection of uric acid and uricase in body fluids,” Talanta, 2022, 244: 123455.

    [102] N. Majeed, A. Noor, and H. M. Siddiqi, “Non-enzymatic liquid crystal-based detection of copper ions in water,” Chemistry Select, 2023, 8(3): e202204433.

    [103] M. G. Shemirani, F. Habibimoghaddam, M. Mohammadimasoudi, M. Esmailpour, and A. Goudarzi, “Rapid and label-free methanol identification in alcoholic beverages utilizing a textile grid impregnated with chiral nematic liquid crystals,” ACS Omega, 2022, 7(42): 37546–37554.

    [104] Y. Zhou, E. Bukusoglu, J. A. Martínez-Gonzalez, M. Rahimi, T. F. Roberts, R. Zhang, et al., “Structural transitions in cholesteric liquid crystal droplets,” ACS Nano, 2016, 10(7): 6484–6490.

    [105] H. G. Lee, S. Munir, and S. Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Applied Materials Interfaces, 2016, 8(39): 26407–26417.

    [106] B. Gollapelli, A. K. Tatipamula, S. Dewanjee, R. S. Pathintia, and J. Vallamkondu, “Detection of bile acids using optical biosensors based on cholesteric liquid crystal droplets,” Journal of Materials Chemistry C, 2021, 9(39): 13991–14002.

    [107] S. Jiang, J. Noh, C. Park, A. D. Smith, N. L. Abbott, and V. M. Zavala, “Using machine learning and liquid crystal droplets to identify and quantify endotoxins from different bacterial species,” Analyst, 2021, 146(4): 1224–1233.

    [108] Y. Zhang, S. Xu, R. Zhang, Z. Deng, Y. Liu, J. Tian, et al., “Automated calculation of liquid crystal sensing images based on deep learning,” Analytical Chemistry, 2022, 94(37): 127810–12787.

    [109] N. Bao, S. Jiang, A. Smith, J. J. Schauer, M. Mavrikakis, R. C. Van Lehn, et al., “Sensing gas mixtures by analyzing the spatiotemporal optical responses of liquid crystals using 3D convolutional neural networks,” ACS Sensors, 2022, 7(9): 2545–2555.

    [110] M. Esmailpour, M. Mohammadimasoudi, M. G. Shemirani, A. Goudarzi, M. H. Heidari Beni, H. Shahsavarani, et al., “Rapid, label-free and low-cost diagnostic kit for COVID-19 based on liquid crystals and machine learning,” Biosensors and Bioelectronics:X, 2022, 12: 100233.

    [111] J. Frazao, S. Palma, H. M. A. Costa, C. Alves, A. C. A. Roque, and M. Silveira, “Optical gas sensing with liquid crystal droplets and convolutional neural networks,” Sensors, 2021, 21(8): 2854.

    [112] Y. Cao, H. Yu, N. L. Abbott, and V. M. Zavala, “Machine learning algorithms for liquid crystal-based sensors,” ACS Sensors, 2018, 3(11): 2237–2245.

    [113] A. D. Smith, N. Abbott, and V. M. Zavala, “Convolutional network analysis of optical micrographs for liquid crystal sensors,” Journal of Physical Chemistry C, 2020, 124(28): 15152–15161.

    [114] L. Qi, Q. Hu, Q. Kang, Y. Bi, Y. Jiang, and L. Yu, “Detection of biomarkers in blood using liquid crystals assisted with aptamer-target recognition triggered in situ rolling circle amplification on magnetic beads,” Analytical Chemistry, 2019, 91(18): 11653–11660.

    [115] J. Liu, Q. Hu, L. Qi, J. M. Lin, and L. Yu, “Liquid crystal-based sensing platform for detection of Pb2+ assisted by DNAzyme and rolling circle amplification,” Journal of Hazardous Materials, 2020, 400: 123218.

    [116] L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, et al., “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Optics Communications, 2017, 402: 181–185.

    [117] D. Zhou, Z. Lan, W. Cao, Y. Chen, S. Zhang, J. Hu, et al., “Liquid crystal optical fiber sensor based on misaligned core configuration for temperature and mixed volatile organic compound detection,” Optics and Laser Technology, 2022, 156: 108545.

    [118] D. I. Avsar and E. Bukusoglu, “Chameleon skin-inspired polymeric particles for the detection of toluene vapor,” Soft Matter, 2020, 16(37): 8683–8691.

    [119] K. J. Kek, J. J. Z. Lee, Y. Otono, and S. Ishihara, “Chemical gas sensors using chiral nematic liquid crystals and its applications,” Journal of the Society for Information Display, 2017, 25(6): 366–373.

    [120] L. Sutarlie, J. Y. Lim, and K. L. Yang, “Cholesteric liquid crystals doped with dodecylamine for detecting aldehyde vapors,” Analytical Chemistry, 2011, 83(13): 5253–5258.

    [121] L. Sutarlie, H. Qin, and K. L. Yang, “Polymer stabilized cholesteric liquid crystal arrays for detecting vaporous amines,” Analyst, 2010, 135(7): 1691–1696.

    [122] T. Y. Yeh, M. F. Liu, R. D. Lin, and S. J. Hwang, “Alcohol selective optical sensor based on porous cholesteric liquid crystal polymer networks,” Molecules, 2022, 27(3): 773.

    [123] M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Advanced Functional Materials, 2016, 26(8): 1154–1160.

    [124] J. E. Stumpel, E. R. Gil, A. B. Spoelstra, C. W. M. Bastiaansen, B. D. J. Schenning, and A. P. H. J. Schenning, “Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels,” Advanced Functional Materials, 2015, 25(22): 3314–3320.

    [125] K. G. Noh and S. Y. Park, “Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-immobilized hydrogel polymer,” Advanced Functional Materials, 2018, 28(22): 1707562.

    [126] J. S. Lim, Y. J. Kim, and S. Y. Park, “Functional solid-state photonic droplets with interpenetrating polymer network and their applications to biosensors,” Sensors and Actuators B–Chemical, 2021, 329: 129165.

    [127] Y. Yang, D. Zhou, X. Liu, Y. Liu, S. Liu, P. Miao, et al., “Optical fiber sensor based on a cholesteric liquid crystal film for mixed VOC sensing,” Optics Express, 2020, 28,(21): 31872–31881.

    [128] Y. Su, Z. Lan, J. Wang, L. Zeng, D. Zhou, Z. Peng, et al., “Optical fiber sensor for determination of methanol ratio in methanol-doped ethanol based on two cholesteric liquid crystal droplets embedded in chitosan,” Journal of Lightwave Technology, 2021, 39(15): 5170–5176.

    [129] K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” Journal of Physical Chemistry B, 2006, 110(51): 26081–26088.

    [130] Y. Zhang, Q. Song, D. Zhao, X. Tang, Y. Zhang, Z. Liu, et al., “Review of different coupling methods with whispering gallery mode resonator cavities for sensing,” Optics and Laser Technology, 2023, 159: 108955.

    [131] Z. Wang, Y. Zhang, X. Gong, Z. Yuan, S. Feng, T. Xu, et al., “Bio-electrostatic sensitive droplet lasers for molecular detection,” Nanoscale Advances, 2020, 2(7): 2713–2719.

    [132] M. Humar and I. Musevic, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Optics Express, 2011, 19(21): 19836–19844.

    [133] R. Duan, Y. Li, H. Li, and J. Yang, “Real-time monitoring of the enzymatic reaction of urease by using whispering gallery mode lasing,” Optics Express, 2019, 27(24): 35427–35436.

    [134] R. Duan, Y. Li, B. Shi, H. Li, and J. Yang, “Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet,” Talanta, 2020, 209: 120513.

    [135] R. Duan, X. Hao, Y. Li, and H. Li, “Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode,” Sensors and Actuators B–Chemical, 2020, 308: 127672.

    [136] Z. Ma, M. Xu, S. Zhou, W. Shan, D. Zhou, Y. Yan, et al., “Ultra-low sample consumption consecutive-detection method for biochemical molecules based on a whispering gallery mode with a liquid crystal microdroplet,” Optics Letters, 2022, 47(2): 381–384.

    [137] R. Duan, Y. Li, Y. He, Y. Yuan, and H. Li, “Quantitative and sensitive detection of lipase using a liquid crystal microfiber biosensor based on the whispering-gallery mode,” Analyst, 2020, 145(23): 7595–7602.

    [138] R. Duan, Y. Li, Y. Yuan, L. Liu, and H. Li, “Functionalised liquid crystal microfibers for hydrogen peroxide and catalase detection using whispering gallery mode,” Liquid Crystals, 2020, 47(11): 1708–1717.

    [139] Z. Wang, Y. Liu, C. Gong, Z. Yuan, L. Shen, P. Chang, et al., “Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay”, PhotoniX, 2021, 2(1): 1–16.

    [140] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating,” Philosophical Magazine, 1902, 4(19–24): 396–402.

    [141] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik, 1968, 216(4): 398–410.

    [142] E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwingungen,” Zeitschrift für Physik a Hadrons and nuclei, 1971, 241(4): 313–324.

    [143] Y. Zhao, R. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance”, Biosensors and Bioelectronics, 2019, 142: 111505.

    [144] A. K. Singh, M. Anwar, R. Pradhan, M. S. Ashar, N. Rai, and S. Dey, “Surface plasmon resonance based-optical biosensor: emerging diagnostic tool for early detection of diseases,” Journal of Biophotonics, 2023, 16(7): 202200380.

    [145] S. Das, R. Devireddy, and M. R. Gartia, “Surface plasmon resonance (SPR) sensor for cancer biomarker detection,” Biosensors, 2023, 13(3): 396.

    [146] A. Vahedi and M. Kouhi, “Liquid crystal-based surface plasmon resonance biosensor,” Plasmonics, 2020, 15(1): 61–71.

    [147] A. S. A. Abuabed, “Study of the effect of nematic order degradation in liquid crystal-based surface plasmon resonance sensors,” Photonics, 2017, 4(2): 24.

    [148] A. Vahedi and M. Kouhi, “Temperature effects on liquid crystal-based tunable biosensors,” Optik, 2021, 242: 167383.

    [149] N. Mehan, “Effects of optic axis rotation on the sensing properties of nematic liquid crystal based surface plasmon resonance (SPR) sensor,” Optical Materials, 2023, 136: 113472.

    [150] B. Kieser, D. Pauluth, and G. Gauglitz, “Nematic liquid crystals as sensitive layers for surface plasmon resonance sensors,” Analytica Chimica Acta, 2001, 434(2): 231–237.

    [151] G. M. Koenig Jr, B. T. Gettelfinger, J. J. de Pablo, and N. L. Abbott, “Using localized surface plasmon resonances to probe the nanoscopic origins of adsorbate-driven ordering transitions of liquid crystals in contact with chemically functionalized gold nanodots,” Nano Letters, 2008, 8(8): 2362–2368.

    [152] F. Esposito, A. Srivastava, L. Sansone, M. Giordano, S. Campopiano, and A. Iadicicco, “Label-free biosensors based on long period fiber gratings: a review,” IEEE Sensors Journal, 2021, 21(11): 12692–12705.

    [153] J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, et al., “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosensors and Bioelectronics, 2019, 142: 111449.

    [154] C. Liu, H. Chen, Q. Chen, Z. Gao, B. Wu, X. Fan, et al., “Sagnac interferometer-based optical fiber strain sensor with exceeding free spectral measurement range and high sensitivity,” Optics and Laser Technology, 2023, 159: 108935.

    [155] P. Nag, K. Sadani, S. Mohapatra, S. Mukherji, and S. Mukherji, “Evanescent wave optical fiber sensors using enzymatic hydrolysis on nanostructured polyaniline for detection of β-lactam antibiotics in food and environment,” Analytical Chemistry, 2021, 93(4): 2299–2308.

    [156] H. Deng, X. Chen, Z. Huang, S. Kang, W. Zhang, H. Li, et al., “Optical fiber based Mach-Zehnder interferometer for APES detection,” Sensors, 2021, 21(17): 5870.

    [157] S. Tang, M. Zou, C. Zhao, Y. Jiang, R. Chen, Z. Xu, et al., “Fabry-Perot interferometer based on a fiber-tip fixed supported bridge for fast glucose concentration measurement,” Biosensors, 2022, 12(6): 391.

    [158] R. Wang, M. Yan, M. Jiang, Y. Li, X. Kang, M. Hu, et al., “Label-free and selective cholesterol detection based on multilayer functional structure coated fiber Fabry-Perot interferometer probe,” Analytica Chimica Acta, 2023, 1252: 341051.

    [159] V. Vikas and P. Saccomandi, “Design considerations of an ITO-coated U-shaped fiber optic LMR biosensor for the detection of antibiotic ciprofloxacin,” Biosensors, 2023, 13(3): 362.

    [160] N. L. N. Tran, B. T. Phan, H. K. T. Ta, T. T. K. Chi, B. T. T. Hien, N. T. T. Phuong, et al., “Gold nanoparticles are capped under the IRMOF-3 platform for in-situ surface-enhanced Raman scattering technique and optic fiber sensor,” Sensors and Actuators A–Physical, 2022, 347: 113932.

    [161] T. Y. Ho, J. W. Huang, B. C. Peng, W. C. Tsao, and C. H. Chen, “Liquid crystal-based sensor system for detecting formaldehyde in aqueous solutions,” Microchemical Journal, 2020, 158: 105235.

    [162] J. Tang, J. Fang, Y. Liang, B. Zhang, Y. Luo, X. Liu, et al., “All-fiber-optic VOC gas sensor based on side-polished fiber wavelength selectively coupled with cholesteric liquid crystal film,” Sensors and Actuators B–Chemical, 2018, 273: 1816–1826.

    [163] D. S. Miller, X. Wang, J. Buchen, O. D. Lavrentovich, and N. L. Abbott, “Analysis of the internal configurations of droplets of liquid crystal using flow cytometry,” Analytical Chemistry, 2013, 85(21): 10296–10303.

    [164] M. Khan and S. Y. Park, “Liquid crystal-based biosensor with backscattering interferometry: a quantitative approach,” Biosensors and Bioelectronics, 2017, 87: 976–983.

    [165] Y. Yan, N. Bu, X. Bai, M. Wang, Y. Ma, S. Jia, et al., “A liquid crystal optical sensor for simple and quantitative determination of dimethylmethylphosphonate using laser speckle,” Optics and Laser in Engineering, 2023, 170: 107763.

    Jieyuan TANG, Zhibin LI, Mengyuan XIE, Yunhan LUO, Jianhui YU, Guojie CHEN, Zhe CHEN. Liquid Crystal Based Label-Free Optical Sensors for Biochemical Application[J]. Photonic Sensors, 2024, 14(2): 240203
    Download Citation