• Laser & Optoelectronics Progress
  • Vol. 57, Issue 1, 012203 (2020)
Zhiqiang Wang1、*, Chunyan Wang1, Hao Sun1、2, Yanhe Chang1, and Yuanyuan Li1
Author Affiliations
  • 1College of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • show less
    DOI: 10.3788/LOP57.012203 Cite this Article Set citation alerts
    Zhiqiang Wang, Chunyan Wang, Hao Sun, Yanhe Chang, Yuanyuan Li. Design of Off-Axis Three-Mirror Optical System for Dynamic Target Simulation[J]. Laser & Optoelectronics Progress, 2020, 57(1): 012203 Copy Citation Text show less
    Optical path of coaxial three-mirror optical system
    Fig. 1. Optical path of coaxial three-mirror optical system
    Imaging quality evaluation of optimized coaxial three-mirror optical system. (a) Spot diagram of system; (b) MTF curves of system
    Fig. 2. Imaging quality evaluation of optimized coaxial three-mirror optical system. (a) Spot diagram of system; (b) MTF curves of system
    Optical path and performance charts of off-axis three-mirror optical system. (a) Optical path of system; (b) MTF curves of system; (c) spot diagrams of system; (d) field curvature and distortion of system; (e) fraction of enclosed energy; (f) polychromatic PSF
    Fig. 3. Optical path and performance charts of off-axis three-mirror optical system. (a) Optical path of system; (b) MTF curves of system; (c) spot diagrams of system; (d) field curvature and distortion of system; (e) fraction of enclosed energy; (f) polychromatic PSF
    ParameterSpecification
    Wavelength /nm200-1200
    Entrance pupil diameter /mm350
    Effective focal length /mm2800
    Field of view /[(°)×(°)]2×2
    F-number8
    MTF (all field) /(70 lp·mm-1)≥0.4
    Table 1. Optical system design parameters
    α1r1 /mmr2 /mmr3 /mmd1 /mmd2 /mmd3 /mmd1+d2 /mm
    0.30000.32000.33000.33300.33330.33360.33380.33400.33500.3360-2800-2800-2800-2800-2800-2800-2800-2800-2800-2800-1681.6817-1793.7938-1849.8498-1966.6667-1868.3483-1870.0300-1871.1512-1872.2723-1877.8779-1883.4835-1678.3183-1790.2062-1846.1502-1862.9333-1864.6117-1866.2900-1867.4088-1868.5277-1874.4088-1879.7165-1960-1904-1876-1867.60-1866.76-1865.92-1865.36-1864.80-1862-1859.201680179218481864.801866.681868.161869.281870.4018761881.60-838.3200-894.2080-922.1520-930.5352-931.3735-932.2118-932.7707-933.3296-936.1240-938.9184-280-112-28-2.8000-0.00802.24003.92005.60001422.4000
    Table 2. Computation list of initial structural parameters
    TypeRadius /mmDistance /mmConic
    PM-5600-1866.7600-1
    SM-1868.34831866.76000
    TM-1864.6117-831.37350
    Table 3. Initial parameters of coaxial three-mirror system
    TypeRadius /mmDistance /mmConic
    PM-4299.6328-1558.2610-1
    SM-1174.58771558.26150
    TM-1555.6747-785.44880
    Table 4. Parameters of optimized coaxial three-mirror optical system
    TypeSurface typeRadius /mmDistance /mmA4A6
    PMEven aspheric surface-5999.930-1597.5061.016×10-12-2.379×10-20
    SMSpherical surface-1914.3211597.50600
    TMEven aspheric surface-2791.271-2000-1.103×10-12-3.654×10-19
    Table 5. Parameters of coaxial high-order aspherical surface based off-axis three-mirror optical system
    x /(°)y /(°)RMS /λ
    010.0064
    00.50.0092
    0-0.50.0089
    0-10.0078
    Table 6. Wave aberrations of different field of view (primary wavelength λ=636.3 nm)
    ToleranceItemPMSMTM
    DX /mm±0.07±0.3
    AssemblingDY /mm±0.1±0.1
    TX /(')±1.2±1.8
    TY /(″)±15±18
    ΔD /mm±0.2±0.2±0.2
    ManufacturingΔR±0.2±0.2±0.2
    ΔK±0.002±0.002
    Table 7. Tolerance allocation results of optical systems
    MTFPercentage /%
    >0.400100
    >0.47490
    >0.48680
    >0.51950
    >0.53720
    >0.54210
    Table 8. Tolerance analysis results of optical systems
    Zhiqiang Wang, Chunyan Wang, Hao Sun, Yanhe Chang, Yuanyuan Li. Design of Off-Axis Three-Mirror Optical System for Dynamic Target Simulation[J]. Laser & Optoelectronics Progress, 2020, 57(1): 012203
    Download Citation