• Acta Optica Sinica
  • Vol. 29, Issue s1, 290 (2009)
Qian Ming1、2、*, Yan Qin3, and Ni Xiaowu3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    Qian Ming, Yan Qin, Ni Xiaowu. Measurement of the Velocities of Nanoparticles in Oriented Nanofluids with Laser Speckle Velocimetry[J]. Acta Optica Sinica, 2009, 29(s1): 290 Copy Citation Text show less
    References

    [1] U. S. Choi. Enhancing thermal conductivity of fluids with nanoparticles[J]. Asme. Fed., 1995, 231: 99~103

    [2] Zhang Lide, Mu Jimei. Nanostructurad Materials Science[M]. Liaoning: Liaoning Science and Technology Publishing House, 1994. 106~140

    [3] H. Ebata Masuda et al.. Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultra-fine particles)[J]. Netsu Bussei 1993, 4: 227~233

    [4] J. A. Eastman, U. S. Choi, S. Li et al.. Enhanced thermal conductivity through the development of nanofluids[J]. Nanophase and Nanocomposite Materials Ⅱ MRS, Pittsburgh, 1997, 457: 3~11

    [5] S. Lee, U. S. Choi, S. Li et al.. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. J. Heat Transfer, 1999, 121(2): 280~289

    [6] J. A. Eastman, U. S. Choi, S. Li et al.. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Appl. Phys. Lett., 2001, 78(6): 718~720

    [7] U. S. Choi, Z. G. Zhang et al.. Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Appl. Phys. Lett., 2001, 79(14): 2252~2254

    [8] Xie Huaqing, Wang Jinchang et al.. Study on the thermal conductivity of SiC nanofluids[J]. J. Chinese Ceramic Society, 2001, 29(4): 361~364

    [9] S. K. Das, N. Putra, P. Thiesen et al.. Temperature dependence of thermal conductivity enhancement for nanofluids[J]. J. Heat Transfer, 2003, 125(4): 567~574

    [10] D. H. Kumar, H. E. Patel et al.. Model for heat conduction in nanofluids[J]. Phys. Rev. Lett., 2004, 93(14): 144301

    [11] Zhang Qiaohui, Zhu Hua et al.. The investigations and applications of nanofluids[J]. Energy Engineering, 2006, 2: 52~54

    [12] J. C. Maxwell. A treatise on electricity and magnetism[M]. 2nd edition, United Kingdom: Clarendon Press, 1881

    [13] R. L. Hamilton, O. K. Crosser. Thermal conductivity of heterogeneous two-component systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187

    [14] R. H. Davis. The effective thermal conductivity of a composite material with spherical inclusions[J]. Int. J. Thermophys, 1986, 7(3): 609~620

    [15] S. P. Jang, S. U. S. Choi. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J]. Appl. Phys. Lett., 2004, 84(21): 4316~4318

    [16] J. Koo, C. Kleinstreuer. A new thermal conductivity model for nanofluids[J]. J. Nanopart. Res., 2004, 6(6): 577~588

    [17] R. Prasher, P. Bhattacharya, P. E. Phelan. Thermal conductivity of nanoscale colloidal solutions (nanofluids)[J]. Phys. Rev. Lett., 2005, 94(2): 025901

    [18] R. Prasher, P. Bhattacharya, P. E. Phelan. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids[J]. J. Heat Transfer, 2006, 128(6): 588~595

    [19] Y. Xuan, Q. Li. Stochastic thermal transport of nanoparticle suspensions[J]. J. Appl. Phys., 2006, 100(4): 043507

    [20] C. H. Chon, K. D. Kihm. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement[J]. Appl. Phys. Lett., 2005, 87(15): 153107

    [21] C. H. Chon, K. D. Kihm. Thermal conductivity enhancement of nanofluids by Brownian motion[J]. J. Heat Transfer, 2005, 127(8): 810

    [22] Ming Qian, Xiaowu Ni et al.. Key issues in measuring the velocities of nanoparticles in nanofluids[J]. Key Engineering Materials, 2008, 364~366: 1111~1116

    [23] Ming Qian, Jun Liu, Mingsheng Yan et al.. Investigation on utilizing laser speckle velocimetry to measure the velocities of nanoparticles in nanofluids[J]. Opt. Express, 2006, 14(17): 7559~7566

    [24] Ming Qian, Zhonghua Shen, Jian Lu et al.. Investigation on the laser transmission properties of nanofluids[C]. SPIE, 2007, 6831: 68310J

    [25] Ming Qian, Zhonghua Shen, Jian Lu et al.. Numerical simulations on the formation of laser speckles with nanofluids[J]. Optics and Lasers in Engineering, 2008, 46(6): 461~468

    [26] Ming Qian, Yan Qin et al.. Monte Carlo simulations of the formation of speckles with nanofluids[J]. Opt. Lasers Eng., 2008, 46(6): 461~468

    [27] Qian Ming et al.. Numerical simulations on the formation of speckles when illuminating nanofluids with laser[J]. J. Optoelectronics·Laser, 2006, 17(suppl.): 367~369

    [28] Ming Qian, Jun Liu et al.. Measurement of the velocities of nanoparticles in nanofluids with laser speckle velocimetry[J]. Lasers in Engineering,

    CLP Journals

    [1] FAN Ji-jun, YU Nan-hui, ZHAI Chao-wu. Measurement of the Velocities of Particles in ER Fluids by Laser Speckle Velocimetry[J]. Opto-Electronic Engineering, 2012, 39(3): 30

    Qian Ming, Yan Qin, Ni Xiaowu. Measurement of the Velocities of Nanoparticles in Oriented Nanofluids with Laser Speckle Velocimetry[J]. Acta Optica Sinica, 2009, 29(s1): 290
    Download Citation