• Photonic Sensors
  • Vol. 1, Issue 4, 323 (2011)
David D. SAMPSON*
Author Affiliations
  • Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering and Centre for Microscopy, Characterisation & Analysis, the University of Western Australia, Crawley, Western Australia, Australia
  • show less
    DOI: 10.1007/s13320-011-0043-2 Cite this Article
    David D. SAMPSON. Staying Coherent After Kent: From Optical Communications to Biomedical Optics[J]. Photonic Sensors, 2011, 1(4): 323 Copy Citation Text show less
    References

    [1] T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Journal of Quantum Electronics, vol. 18, no. 4, pp. 626-665, 1982.

    [2] D. D. Sampson and M. C. Elias, “Semiconductor laser stabilization using short external cavities,” in Proc. 12th Australian Conference on Optical Fiber Technology, Sydney, Australia, December 6-9, pp. 151-154, 1987.

    [3] D. T. Cassidy, “Trace gas-detection using 1.3-μm InGaAsP diode-laser transmitter modules,” Applied Optics, vol. 27, no. 3, pp. 610-614, 1988.

    [4] G. Stewart, W. Johnstone, J. R. P. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation - Part I: theoretical analysis,” Journal of Lightwave Technology, vol. 29, no. 6, pp. 811-821, 2011.

    [5] J. H. Van Vleck and D. Middleton, “Spectrum of clipped noise,” in Proceedings of the Institute of Electrical and Electronics Engineers, vol. 54, pp. 2-19, 1966.

    [6] R. H. Brown and R. Q. Twiss, “Correlation between photons in 2 coherent beams of light,” Nature, vol. 177, no. 4497, pp. 27-29, 1956.

    [7] H. Z. Cummins and E. R. Pike, Eds., Photon Correlation and Light Beating Spectroscopy. Nato Advanced Study Institute, New York: Plenum, 1973.

    [8] A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy. New York: Wiley, 1986.

    [9] D. A. Jackson and J. D. C. Jones, “Proposed topologies for a fiber-optic-based 1-GHz clipped digital correlator,” Optics Letters, vol. 11, no. 12, pp. 824- 826, 1986.

    [10] K. P. Jackson and H. J. Shaw, “Fiber-optic delay line processors,” in Optical Signal Processing, J. L. Horner Ed., New York: Academic Press, 1987.

    [11] B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal-processing,” in Proceedings of the IEEE, vol. 72, pp. 909-930, 1984.

    [12] D. D. Sampson and D. A. Jackson, “High-speed optical pulse generation using single-mode optical fiber networks,” Review of Scientific Instruments, vol. 62, no. 1, pp. 36-41, 1991.

    [13] J. L. Hullett and T. V. Muoi, “A feedback receive amplifier for optical transmission-systems,” IEEE Transactions on Communications, vol. 24, no. 10, pp. 1180-1185, 1976.

    [14] D. D. Sampson and D. A. Jackson, “Experimental realization of a fiber-optic-based multichannel digital correlator,” Optics Letters, vol. 16, no. 23, pp. 1899-1901, 1991.

    [15] D. D. Sampson, W. T. Dove, and D. A. Jackson, “High-bandwidth, optical-fiber delay-line multichannel digital correlator,” Applied Optics, vol. 32, no. 21, pp. 3905-3916, 1993.

    [16] D. D. Sampson and D. A. Jackson, “Coherent optical fiber communications system using all-optical correlation processing,” Optics Letters, vol. 15, no. 10, pp. 585-587, 1990.

    [17] M. E. Marhic and Y. L. Chang, “Pulse coding and coherent decoding in fiber-optic ladder networks,” Electronics Letters, vol. 25, no. 22, pp. 1535-1536, 1989.

    [18] Y. L. Chang and M. E. Marhic, “Fiberoptic ladder networks for inverse decoding coherent CDMA,” Journal of Lightwave Technology, vol. 10, no. 12, pp. 1952-1962, 1992.

    [19] C. Delisle and P. Cielo, “Application of spectrum modulation to data transfer,” Canadian Journal of Physics, vol. 53, no. 11, pp. 1047-1053, 1975.

    [20] J. P. Goedgebuer, H. Porte, and A. Hamel, “Electrooptic modulation of multilongitudinal mode laser-diodes - demonstration at 850 nm with simultaneous data-transmission by coherence multiplexing,” IEEE Journal of Quantum Electronics, vol. 23, no. 7, pp. 1135-1144, 1987.

    [21] S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometric sensors,” in Proc. 1st International Conference on Optical Fiber Sensors (IEE), London, United Kingdom, April 26-28, pp. 132-135, 1983.

    [22] J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, and H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” Journal of Lightwave Technology, vol. 3, no.5, pp. 1062-1072, 1985.

    [23] J. P. Goedgebuer and A. Hamel, “Coherence multiplexing using a parallel array of electrooptic modulators and multimode semiconductor-lasers,” IEEE Journal of Quantum Electronics, vol. 23, no. 12, pp. 2224-2237, 1987.

    [24] D. D. Sampson, R. A. Griffin, and D. A. Jackson, “Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks,” Journal of Lightwave Technology, vol. 12, no. 11, pp. 2001-2010, 1994.

    [25] D. D. Sampson, M. Calleja, and R. A. Griffin, “Crosstalk performance of coherent time-addressed photonic CDMA networks,” IEEE Transactions on Communications, vol. 46, no. 3, pp. 338-348, 1998.

    [26] R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Demonstration of data-transmission using coherent correlation to reconstruct a coded pulse sequence,” IEEE Photonics Technology Letters, vol. 4, no. 5, pp. 513-515, 1992.

    [27] R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Optical-phase coding for code-division multiple access networks,” IEEE Photonics Technology Letters, vol. 4, no. 12, pp. 1401-1404, 1992.

    [28] J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light-pulse code-division multiple access communication systems,” Journal of Lightwave Technology, vol. 8, no. 3, pp. 478-491, 1990.

    [29] A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” Journal of the Optical Society of America B-Optical Physics, vol. 5, no. 8, pp. 1563-1572, 1988.

    [30] R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Modification of optical coherence using spectral phase coding for use in photonic code-division multiple-access systems,” Electronics Letters, vol. 29, no. 25, pp. 2214-2216, 1993.

    [31] R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple-access networks,” Journal of Lightwave Technology, vol. 13, no. 9, pp. 1826-1837, 1995.

    [32] J. W. Goodman, Statistical Optics. New York: John Wiley & Sons, 2000.

    [33] P. Healey, “Dimensioning an optical-fiber spread-spectrum multiple-access communication system,” Optics Letters, vol. 12, no. 6, pp. 425-427, 1987.

    [34] K. W. Chu and F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Optical Engineering, vol. 30, no. 3, pp. 337-344, 1991.

    [35] R. H. Wentworth, “Theoretical noise performance of coherence-multiplexed interferometric sensors,” Journal of Lightwave Technology, vol. 7, no. 6, pp. 941-956, 1989.

    [36] P. R. Prucnal and M. A. Santoro, “Spread spectrum fiberoptic local area network using optical-processing,” Journal of Lightwave Technology, vol. 4, no. 5, pp. 547-554, 1986.

    [37] D. Brady and S. Verdú, “A semiclassical analysis of optical code division multiple access,” IEEE Transactions on Communications, vol. 39, no. 1, pp. 85-93, 1991.

    [38] D. D. Sampson, G. J. Pendock, and R. A. Griffin, “Photonic code-division multiple-access communications,” Fiber and Integrated Optics, vol. 16, no. 2, pp. 129-157, 1997.

    [39] G. J. Pendock, M. J. L. Cahill, and D. D. Sampson, “Multigigabit-per-second demonstration of photonic code-division multiplexing,” Electronics Letters, vol. 31, no. 10, pp. 819-820, 1995.

    [40] G. J. Pendock and D. D. Sampson, “Increasing the transmission capacity of coherence multiplexed communication systems by using differential detection,” IEEE Photonics Technology Letters, vol. 7, no. 12, pp. 1504-1506, 1995.

    [41] G. J. Pendock and D. D. Sampson, “Noise in coherence-multiplexed optical fiber systems,” Applied Optics, vol. 36, no. 36, pp. 9536-9540, 1997.

    [42] G. J. Pendock and D. D. Sampson, “Capacity of coherence-multiplexed cdma networks,” Optics Communications, vol. 143, no. 1-3, pp. 109-117, 1997.

    [43] M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop applications,” Electronics Letters, vol. 24, no. 7, pp. 389-390, 1988.

    [44] D. D. Sampson and W. T. Holloway, “100-mW spectrally-uniform broad-band ASE source for spectrum-sliced WDM systems,” Electronics Letters, vol. 30, no. 19, pp. 1611-1612, 1994.

    [45] M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technology Letters, vol. 3, no. 2, pp. 118-120, 1991.

    [46] D. D. Sampson and W. T. Holloway, “Transmission of 622Mbit/s spectrum-sliced WDM channel over 60km of nondispersion-shifted fiber at 1550nm,” Electronics Letters, vol. 30, no. 21, pp. 1767-1768, 1994.

    [47] A. J. Keating, W. T. Holloway, and D. D. Sampson, “Feedforward noise reduction of incoherent light for spectrum-sliced transmission at 2.5 Gb/s,” IEEE Photonics Technology Letters, vol. 7, no. 12, pp. 1513-1515, 1995.

    [48] A. J. Keating and D. D. Sampson, “Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications,” Journal of Lightwave Technology, vol. 15, no. 1, pp. 53-61, 1997.

    [49] W. T. Holloway, A. J. Keating, and D. D. Sampson, “Multiwavelength source for spectrum-sliced WDM access networks and LAN’s,” IEEE Photonics Technology Letters, vol. 9, no. 7, pp. 1014-1016, 1997.

    [50] R. D. T. Lauder, J. M. Badcock, W. T. Holloway, and D. D. Sampson, “WDM ring network employing a shared multiwavelength incoherent source,” IEEE Photonics Technology Letters, vol. 10, no. 2, pp. 294-296, 1998.

    [51] G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” Journal of Lightwave Technology, vol. 14, no. 10, pp. 2141-2148, 1996.

    [52] S. D. Personick, “Baseband linearity and equalization in fiber optic digital communication systems,” Bell System Technical Journal, vol. 52, no. 7, pp. 1175-1194, 1973.

    [53] D. Marcuse, “Calculation of bit-error probability for a lightwave system with optical amplifiers and postdetection Gaussian-noise,” Journal of Lightwave Technology, vol. 9, no. 4, pp. 505-513, 1991.

    [54] G. J. Pendock and D. D. Sampson, “Signal-to-noise ratio of modulated sources of ase transmitted over dispersive fiber,” IEEE Photonics Technology Letters, vol. 9, no. 7, pp. 1002-1004, 1997.

    [55] R. A. Griffin, D. A. Jackson, and D. D. Sampson, “Coherence and noise properties of gain-switched Fabry-Perot semiconductor lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, no. 2, pp. 569-576, 1995.

    [56] M. J. L. Cahill, G. J. Pendock, and D. D. Sampson, “Low error rate return-to-zero direct modulation of gain-switched lasers,” Optical and Quantum Electronics, vol. 28, no. 9, pp. 1181-1185, 1996.

    [57] D. S. Seo, H. F. Liu, D. Y. Kim, and D. D. Sampson, “Injection power and wavelength dependence of an external-seeded gain-switched Fabry-Perot laser,” Applied Physics Letters, vol. 67, no. 11, pp. 1503-1505, 1995.

    [58] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178-1181, 1991.

    [59] D. D. Sampson and T. R. Hillman, “Optical coherence tomography,” in Lasers and Current Optical Techniques in Biology, vol. 4, G. Palumbo and R. Pratesi, Eds. Cambridge, UK: Royal Society of Chemistry, 2004, pp. 481-571.

    [60] T. R. Hillman and D. D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 13, no. 6, pp. 1860-1874, 2005.

    [61] E. D. J. Smith, A. V. Zvyagin, and D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Optics Letters, vol. 27, no. 22, pp. 1998-2000, 2002.

    [62] J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters, vol. 25, no. 1, pp. 25-27, 2000.

    [63] E. D. J. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, “Spectral domain interferometry for ocdr using non-gaussian broad-band sources,” IEEE Photonics Technology Letters, vol. 13, no. 1, pp. 64-66, 2001.

    [64] E. D. J. Smith, N. Wada, W. Chujo, and D. D. Sampson, “High resolution OCDR using 1.55 μm supercontinuum source and quadrature spectral detection,” Electronics Letters, vol. 37, no. 21, pp. 1305-1307, 2001.

    [65] R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Optics Letters, vol. 27, no. 6, pp. 406-408, 2002.

    [66] B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Optics Letters, vol. 27, no. 20, pp. 1800-1802, 2002.

    [67] D. D. Sampson, N. Wada, K. Kitayama, and W. Chujo, “Demonstration of reconfigurable all-optical code conversion for photonic code-division multiplexing and networking,” Electronics Letters, vol. 36, no. 5, pp. 445-447, 2000.

    [68] J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications. Englewood: Roberts & Company, 2007.

    [69] J. C. Dainty, Laser Speckle and Related Phenomena, Second ed. Heidelberg: Springer, 1984.

    [70] J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics, vol. 4, no. 1, pp. 95-105, 1999.

    [71] T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Optics Letters, vol. 31, no. 2, pp. 190-192, 2006.

    [72] B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Optics Letters, vol. 35, no. 14, pp. 2445-2447, 2010.

    [73] B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” Journal of Biomedical Optics, vol. 16, no. 2, 2011.

    [74] D. D. Sampson, “Optical bioimaging 2010: Seeing more, deeper, faster,” IEEE Photonics Journal, vol. 3, no. 2, pp. 278-283, 2011.

    [75] J. C. Clements, A. V. Zvyagin, K. K. M. B. D. Silva, T. Wanner, D. D. Sampson, and W. A. Cowling, “Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds,” Plant Breeding, vol. 123, no. 3, pp. 266-270, 2004.

    [76] S. G. Adie, T. R. Hillman, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography using the spatial distribution of stokes vectors,” Optics Express, vol. 15, no. 26, pp. 18033-18049, 2007.

    [77] T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Optics Letters, vol. 35, no. 12, pp. 1998-2000, 2010.

    [78] D. D. Sampson and D. A. Jackson, “Spread-spectrum optical fiber network based on pulsed coherent correlation,” Electronics Letters, vol. 26, no. 19, pp. 1550-1552, 1990.

    [79] K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400-Hz mechanical scanning optical delay-line,” Optics Letters, vol. 18, no. 7, pp. 558-560, 1993.

    [80] R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of picosecond pulse shape synthesis by spectral masking in a grating pulse compressor,” IEEE Journal of Quantum Electronics, vol. 22, no. 5, pp. 682-696, 1986.

    [81] G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Optics Letters, vol. 22, no. 23, pp. 1811-1813, 1997.

    [82] A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Optics Express, vol. 3, no. 6, pp. 219-228, 1998.

    [83] K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, “Extended range, rapid scanning optical delay line for biomedical interferometric imaging,” Electronics Letters, vol. 35, no. 17, pp. 1404-1406, 1999.

    [84] A. V. Zvyagin and D. D. Sampson, “Achromatic optical phase shifter-modulator,” Optics Letters, vol. 26, no. 4, pp. 187-189, 2001.

    [85] A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 20, no. 2, pp. 333-341, 2003.

    [86] R. Barer, “Refractometry and interferometry of living cells,” Journal of the Optical Society of America, vol. 47, no. 6, pp. 545-556, 1957.

    [87] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive-index of highly scattering human tissue by optical coherence tomography,” Optics Letters, vol. 20, no. 21, pp. 2258-2260, 1995.

    [88] S. A. Alexandrov, A. V. Zvyagin, K. K. M. B. D. Silva, and D. D. Sampson, “Bifocal-optical coherenc refractometry of turbid media,” Optics Letters, vol. 28, no. 2, pp. 117-119, 2003.

    [89] A. V. Zvyagin, K. K. M. B. D. Silva, S. A. Alexandrov, T. R. Hillman, J. J. Armstrong, T. Tsuzuki, and D. D. Sampson, “Refractive index tomography of turbid media by bifocal optical coherence refractometry,” Optics Express, vol. 11, no. 25, pp. 3503-3517, 2003.

    [90] A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, “Needle-based refractive index measurement using low-coherence interferometry,” Optics Letters, vol. 32, no. 4, pp. 385-387, 2007.

    [91] A. M. Zysk, D. L. Marks, D. Y. Liu, and S. A. Boppart, “Needle-based reflection refractometry of scattering samples using coherence-gated detection,” Optics Express, vol. 15, no. 8, pp. 4787-4794, 2007.

    [92] R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” Journal of Biomedical Optics, vol. 15, no. 4, pp. 046029, 2010.

    [93] S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Physics in Medicine and Biology, vol. 54, no. 10, pp. 3129-3139, 2009.

    [94] B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Optics Express, vol. 17, no. 24, pp. 21762-21772, 2009.

    [95] S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Optics Express, vol. 18, no. 25, pp. 25519-25534, 2010.

    [96] B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Optics Express, vol. 19, no. 7, pp. 6623-6634, 2011.

    [97] J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annual Review of Biomedical Engineering, vol. 5, pp. 57-78, 2003.

    [98] R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic-resonance elastography by direct visualization of propagating acoustic strain waves,” Science, vol. 269, no. 5232, pp. 1854-1857, 1995.

    [99] J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Optics Express, vol. 3, no. 6, pp. 199-211, 1998.

    [100] B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” Journal of Biomedical Optics, vol. 15, no. 3, pp. 030507, 2010.

    [101] A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantoms for optical coherence tomography,” Optics Express, vol. 19, 2011 (in press).

    [102] X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Optics Letters, vol. 25, no. 20, pp. 1520-1522, 2000.

    [103] J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” Journal of Neurophysiology, vol. 92, no. 5, pp. 3121-3133, 2004.

    [104] B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an OCT needle probe,” Journal of Biomedical Optics, vol. 16, no. 3, pp. 036009, 2011.

    [105] R. A. McLaughlin, L. Scolaro, P. Robbins, S. Hamza, C. Saunders, and D. D. Sampson, “Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer,” Cancer Research, vol. 70, no. 7, pp. 2579-2584, 2010.

    [106] W. Drexler and J. G. Fujimoto (editors), Optical Coherence Tomography: Technology and Applications. Heidelberg: Springer, 2008.

    [107] S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Research and Treatment, vol. 84, no. 2, pp. 85-97, 2004.

    [108] C. Zhou, D. W. Cohen, Y. H. Wang, H. C. Lee, A. E. Mondelblatt, T. H. Tsai, A. D. Aguirre, J. G. Fujimoto, and J. L. Connolly, “Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues,” Cancer Research, vol. 70, no. 24, pp. 10071-10079, 2010.

    [109] M. J. Cobb, J. H. Hwang, M. P. Upton, Y. C. Chen, B. K. Oelschlager, D. E. Wood, M. B. Kimmey, and X. D. Li, “Imaging of subsquamous Barrett’s epithelium with ultrahigh-resolution optical coherence tomography: a histologic correlation study,” Gastrointestinal Endoscopy, vol. 71, no. 2, pp. 223-230, 2010.

    [110] J. J. Armstrong, M. S. Leigh, I. D. Walton, A. V. Zvyagin, S. A. Alexandrov, S. Schwer, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “In vivo size and shape measurement of the human upper airway using endoscopic long-range optical coherence tomography,” Optics Express, vol. 11, no. 15, pp. 1817-1826, 2003.

    [111] J. J. Armstrong, M. S. Leigh, D. D. Sampson, J. H. Walsh, D. R. Hillman, and P. R. Eastwood, “Quantitative upper airway imaging with anatomic optical coherence tomography,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 2, pp. 226-233, 2006.

    [112] M. S. Leigh, J. J. Armstrong, A. Paduch, J. H. Walsh, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Anatomical optical coherence tomography for long-term, portable, quantitative endoscopy,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 4, pp. 1438-1446, 2008.

    [113] R. A. McLaughlin, J. P. Williamson, M. J. Phillips, J. J. Armstrong, S. Becker, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway,” Optics Express, vol. 16, no. 22, pp. 17521-17529, 2008.

    [114] J. H. Walsh, M. S. Leigh, A. Paduch, K. J. Maddison, J. J. Armstrong, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Effect of body posture on pharyngeal shape and size in adults with and without obstructive sleep apnea,” Sleep, vol. 31, no. 11, pp. 1543-1549, 2008.

    [115] J. H. Walsh, M. S. Leigh, A. Paduch, K. J. Maddison, D. L. Philippe, J. J. Armstrong, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Evaluation of pharyngeal shape and size using anatomical optical coherence tomography in individuals with and without obstructive sleep apnoea,” Journal of Sleep Research, vol. 17, no. 2, pp. 230-238, 2008.

    [116] R. A. McLaughlin, J. J. Armstrong, S. Becker, J. H. Walsh, A. Jain, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Respiratory gating of anatomical optical coherence tomography images of the human airway,” Optics Express, vol. 17, no. 8, pp. 6568-6577, 2009.

    [117] J. P. Williamson, R. A. McLaughlin, M. J. Phillips, J. J. Armstrong, S. Becker, J. H. Walsh, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Using optical coherence tomography to improve diagnostic and therapeutic bronchoscopy,” Chest, vol. 136, no. 1, pp. 272-276, 2009.

    [118] P. B. Noble, R. A. McLaughlin, A. R. West, S. Becker, J. J. Armstrong, P. K. McFawn, P. R. Eastwood, D. R. Hillman, D. D. Sampson, and H. W. Mitchell, “Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography,” Respiratory Research, vol. 11, no. 1, doi:10.1186/1465-9921-11-9 (12 pages), 2010.

    [119] P. B. Noble, A. R. West, R. A. McLaughlin, J. J. Armstrong, S. Becker, P. K. McFawn, J. P. Williamson, P. R. Eastwood, D. R. Hillman, D. D. Sampson, and H. W. Mitchell, “Airway narrowing assessed by anatomical optical coherence tomography in vitro: dynamic airway wall morphology and function,” Journal of Applied Physiology, vol. 108, no. 2, pp. 401-411, 2010.

    [120] J. P. Williamson, J. J. Armstrong, R. A. McLaughlin, P. B. Noble, A. R. West, S. Becker, A. Curatolo, W. J. Noffsinger, H. W. Mitchell, M. J. Phillips, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Measuring airway dimensions during bronchoscopy using anatomical optical coherence tomography,” European Respiratory Journal, vol. 35, no. 1, pp. 34-41, 2010.

    [121] J. P. Williamson, R. A. McLaughlin, W. J. Noffsingerl, A. L. James, V. A. Baker, A. Curatolo, J. J. Armstrong, A. Regli, K. L. Shepherd, G. B. Marks, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 612-619, 2011.

    [122] J. J. Armstrong and D. D. Sampson, “Distance ranging to biological tissue using fiber-optic Fabry-Perot, short tuning range FMCW interferometry,” in Proc. SPIE (OFS-14), vol. 4185 (A. G. Mignani, H. C. Lefevre, Eds.), pp. 366-369, 2000.

    [123] B. Lau, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. K. Gerstmann, and D. D. Sampson, “Imaging true 3d endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways,” Optics Express, vol. 18, no. 26, pp. 27173-27180, 2010.

    [124] A. D. Lucey, A. J. C. King, G. A. Tetlow, J. Wang, J. J. Armstrong, M. S. Leigh, A. Paduch, J. H. Walsh, D. D. Sampson, P. R. Eastwood, and D. R. Hillman, “Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 10, pp. 2535-2548, 2010.

    [125] J. P. Williamson, R. A. McLaughlin, M. J. Phillips, A. Curatolo, J. J. Armstrong, K. J. Maddison, R. E. Sheehan, D. D. Sampson, D. R. Hillman, and P. R. Eastwood, “Feasibility of applying real-time optical imaging during bronchoscopic interventions for central airway obstruction,” Journal of Bronchology and Interventional Pulmonology, vol. 17, no. 4, pp. 307-316, 2010.

    [126] P. D. Pare, “Central airway compliance in asthma up or down Good or bad ,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 563-564, 2011.

    [127] O. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers in Surgery and Medicine, vol. 24, no. 2, pp. 133-141, 1999.

    [128] G. Vargas, K. F. Chan, S. L. Thomsen, and A. J. Welch, “Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin,” Lasers in Surgery and Medicine, vol. 29, no. 3, pp. 213-220, 2001.

    [129] R. Cicchi, F. S. Pavone, D. Massi, and D. D. Sampson, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Optics Express, vol. 13, no. 7, pp. 2337-2344, 2005.

    [130] V. V. Tuchin, Optical Clearing of Tissues and Blood. Bellingham, Wash.: SPIE Press, 2006.

    [131] J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Optics Letters, vol. 21, no. 16, pp. 1310-1312, 1996.

    [132] J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 14, no. 6, pp. 1231-1242, 1997.

    [133] J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: A discrete particle model,” Applied Optics, vol. 37, no. 13, pp. 2788-2797, 1998.

    [134] D. H. P. Schneiderheinze, T. R. Hillman, and D. D. Sampson, “Modified discrete particle model of optical scattering in skin tissue accounting for multiparticle scattering,” Optics Express, vol. 15, no. 23, pp. 15002-15010, 2007.

    [135] C. A. Morton and R. M. MacKie, “Clinical accuracy of the diagnosis of cutaneous malignant melanoma,” British Journal of Dermatology, vol. 138, no. 2, pp. 283-287, 1998.

    [136] C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein, “Accuracy in the clinical diagnosis of malignant melanoma,” Archives of Dermatology, vol. 126, no. 6, pp. 763-766, 1990.

    [137] B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” Journal of Biomedical Optics, vol. 10, no. 6, pp. 064020, 2005.

    [138] N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scatter imaging: Subcellular morphometry in situ with Fourier filtering,” Optics Letters, vol. 26, no. 14, pp. 1063-1065, 2001.

    [139] S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Optics Letters, vol. 30, no. 24, pp. 3305-3307, 2005.

    [140] T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, “Microscopic particle discrimination using spatially-resolved fourier-holographic light scattering angular spectroscopy,” Optics Express, vol. 14, pp. 11088-11102, 2006.

    [141] T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Three-dimensional depth-resolved and extended-resolution micro-particle characterization by holographic light scattering spectroscopy,” Optics Express, vol. 18, no. 24, pp. 25116-25126, 2010.

    [142] S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Physical Review Letters, vol. 97, no. 16, pp. 168102, 2006.

    [143] S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy (vol. 97, art. 168102, 2006),” Physical Review Letters, vol. 98, no. 9, pp. 099905, 2007.

    [144] S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Digital Fourier holography enables wide-field, superresolved, microscopic characterization,” In the special issue “Optics in 2007” of Optics & Photonics News, vol. 18, pp. 29, 2007.

    [145] T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Optics Express, vol. 17, no. 10, pp. 7873-7892, 2009.

    [146] T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Optics Letters, vol. 35, no. 8, pp. 1136-1138, 2010.

    [147] S. A. Alexandrov and D. D. Sampson, “Spatial information transmission beyond a system’s diffraction limit using optical spectral encoding of spatial frequency,” Journal of Optics A: Pure and Applied Optics, vol. 10, no. 2, pp. 025304, 2008.

    David D. SAMPSON. Staying Coherent After Kent: From Optical Communications to Biomedical Optics[J]. Photonic Sensors, 2011, 1(4): 323
    Download Citation