• Opto-Electronic Engineering
  • Vol. 45, Issue 9, 170684 (2018)
Iroegbu Paul Ikechukwu1, Huang Shihong1, Li Yujia1, Li Fuhui1, Huang Ligang1, Gao Lei1, Bai Yongzhong2, Qu Dingrong2, Qiu Feng2, Huang Xianbin2, and Zhu Tao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.170684 Cite this Article
    Iroegbu Paul Ikechukwu, Huang Shihong, Li Yujia, Li Fuhui, Huang Ligang, Gao Lei, Bai Yongzhong, Qu Dingrong, Qiu Feng, Huang Xianbin, Zhu Tao. Laser sources for optical fiber sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 170684 Copy Citation Text show less
    References

    [1] Zhang S, Wang Z, Liu M H, et al. Development and application of optical fiber sensing technology[J]. Optical Fiber & Electric Cable, 2007(3): 1–3.

    [2] Liao Y B, Li M. The development of optical fiber sensors[J]. Sensor World, 2004, 10(2): 6–12.

    [3] Jia F X, Ding Z L, Yuan F, et al. Real-time laser range finding system for moving target based on all-phase fourier transfrorm spectrum analysis[J]. Acta Optica Sinica, 2010, 30(10): 2928–2934.

    [4] Zhang X P. All Distributed optical Fiber Sensing Technology[M]. Beijing: Science Press, 2013.

    [5] Geng J H, Spiegelberg C, Jiang S B. Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry[J]. IEEE Photonics Technology Letters, 2005, 17(9): 1827–1829.

    [6] Passy R, Gisin N, von der Weid J P, et al. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources[J]. Journal of Lightwave Technology, 1994, 12(9): 1622–1630.

    [7] Cranch G A, Nash P J, Kirkendall C K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal, 2003, 3(1): 19–30.

    [8] Bao X, Dhliwayo J, Heron N, et al. Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering[J]. Journal of Lightwave Technology, 1995, 13(7): 1340–1348.

    [9] Zhou H B, Liu J Y, Lai J Z, et al. Development status of fiber- optic gyroscopes[J]. Journal of Transducer Technology, 2005, 24(6): 1–3.

    [10] Tan X Y. The Development, key technology and application prospect of military fiber optic gyroscope[J]. Modern Defence Technology, 1998(4): 56-62.

    [11] Gu Y H, Dai J Z, Dai Z Y. Development and application of optical frequency domain reflectometer with high resolution[J]. Infrared, 2009, 30(4): 30-40.

    [12] Liu S Z, Zhang W, Yu J X. Photoacoustic spectrometer based on the combination of tunable erbium doped fiber laser and erbium doped fiber amplifier[J]. Chinese Journal of Lasers, 2009, 36(4): 964-967.

    [13] Peng Y. Tunable fiber laser based photoacoustic spectroscopy technology for trace gas detection[D]. Dalian: Dalian University of Technology, 2011.

    [14] Jackson D A, Lobo R A B, Reekie L, et al. Simple multiplexing scheme for a fiber-optic grating sensor network[J]. Optics Letters, 1993, 18(14): 1192–1194.

    [15] Zhao C L, Xiao L M, Ju J, et al. Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor[J]. Journal of Lightwave Technology, 2008, 26(2): 220–227.

    [16] Zhang W D, Wei K Y, Huang L G, et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating[J]. Optics Express, 2016, 24(17): 19278–19285.

    [17] Hong K S, Park H C, Kim B Y, et al. 1000 nm tunable acousto- optic filter based on photonic crystal fiber[J]. Applied Physics Letters, 2008, 92(3): 031110.

    [18] Albert J, Shao L Y, Caucheteur C. Tilted fiber bragg grating sensors[J]. Laser & Photonics Review, 2013, 7(1): 83–108.

    [19] Cliche J F, Allard M, Têtu M. Ultra-narrow linewidth and high frequency stability laser sources[C]//Proceedings of the Coherent Optical Technologies and Applications, 2006.

    [20] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2011, 6(10): 687–692.

    [21] Peng Y. A compact narrow-linewidth laser with a low-Q monolithic cavity[J]. Laser Physics, 2013, 23(10): 105809.

    [22] Bernhardi E H, van Wolferen H A G M, Agazzi L, et al. Ultra- narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon[J]. Optics Letters, 2010, 35(14): 2394–2396.

    [23] Liang W, Ilchenko V S, Savchenkov A A, et al. Whispering- gallery-mode-resonator-based ultranarrow linewidth external- cavity semiconductor laser[J]. Optics Letters, 2010, 35(16): 2822–2824.

    [24] Huang S H, Zhu T, Liu M, et al. Precise measurement of ultra- narrow laser linewidths using the strong coherent envelope[J]. Scientific Reports, 2017, 7: 41988.

    [25] Spiegelberg C, Geng J H, Hu Y D, et al. Low-noise narrow- linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 2004, 22(1): 57–62.

    [26] Shen Y H, Qiu Y Q, Wu B, et al. Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range[J]. Optics Express, 2007, 15(15): 363–370.

    [27] Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 2010, 18(2): 1249–1254.

    [28] Mo S P, Huang X, Xu S H, et al. 600-Hz linewidth short-linear-cavity fiber laser[J]. Optics Letters, 2014, 39(20): 5818–5821.

    [29] Yang F, Ye Q, Pan Z Q, et al. 100-mW linear polarization single- frequency all-fiber seed laser for coherent Doppler lidar application[ J]. Optics Communications, 2012, 285(2): 149–152.

    [30] Chen M, Meng Z, Tu X B, et al. Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser[J]. Optics Letters, 2013, 38(12): 2041–2043.

    [31] Chen M, Meng Z, Zhang Y C, et al. Ultranarrow-linewidth brillouin/ erbium fiber laser based on 45-cm erbium-doped fiber[J]. IEEE Photonics Journal, 2015, 7(1): 1500606.

    [32] Zhu T, Bao X Y, Chen L, et al. Experimental study on stimulated Rayleigh scattering in optical fibers[J]. Optics Express, 2010, 18(20): 22958–22963.

    [33] Zhu T, Bao X Y, Chen L. A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering[J]. Optics Communications, 2012, 285(6): 1371–1374.

    [34] Zhu T, Chen F Y, Huang S H, et al. An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber[J]. Laser Physics Letters, 2013, 10(5): 055110.

    [35] Zhu T, Huang S H, Shi L L, et al. Rayleigh backscattering: a method to highly compress laser linewidth[J]. Chinese Science Bulletin, 2014, 59(33): 4631–4636.

    [36] Yin G L, Saxena B, Bao X Y. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber[J]. Optics Express, 2011, 19(27): 25981–25989.

    [37] Pang M, Xie S R, Bao X Y, et al. Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber[J]. Optics Letters, 2012, 37(15): 3129–3131.

    [38] Saxena B, Bao X Y, Chen L. Suppression of thermal frequency noise in erbium-doped fiber random lasers[J]. Optics Letters, 2014, 39(4): 1038–1041.

    [39] Mears R J, Reekie L, Poole S B, et al. Low-threshold tunable CW and Q-switched fiber laser operating at 1.55 μm[J]. Electronic Letters, 1986, 22(3): 159-160.

    [40] Iwatsuki K, Okamura H, Saruwatari M. Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth[J]. Electronics Letters, 1990, 26(24): 2033-2035.

    [41] Maeda M W, Patel J S, Smith D A, et al. An electronically tunable fiber laser with a liquid-crystal etalon filter as the wavelength- tuning element[J]. IEEE Photonics Technology Letters, 1990, 2(11): 787-789.

    [42] Smith D A, Maeda M W, Johnson J J, et al. Acoustically tuned erbium-doped fiber ring laser[J]. Optics Letters, 1991, 16(6): 387–389.

    [43] Zyskind J L, Sulhoff J W, Sun Y, et al. Singlemode diode- pumped tunable erbium-doped fibre laser with linewidth less than 5.5 kHz[J]. Electronics Letters, 1991, 27(23): 2148-2149.

    [44] Lin G R, Chang J Y, Liao Y S, et al. L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tunability[J]. Optics Express, 2006, 14(21): 9743-9749.

    [45] Zhang A Q, Feng X H, Wan M G, et al. Tunable single frequency fiber laser based on FP-LD injection locking[J]. Optics Express, 2013, 21(10): 12874–12880.

    [46] Zhu T, Bao X Y, Chen L. A single longitudinal-mode tunable fiber ring laser based on stimulated rayleigh scattering in a nonuniform optical fiber[J]. Journal of Lightwave Technology, 2011, 29(12): 1802–1807.

    [47] Zhu T, Zhang B M, Shi L L, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering[ J]. Optics Express, 2016, 24(2): 1324-1330.

    [48] Li Y J, Gao L, Zhu T, et al. Graphene-assisted all-fiber optical- controllable laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0901709.

    [49] Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation and Applications[M]. Norwell: Springer, 2004.

    [50] Al-Taiy H, Wenzel N, Preu ler S, et al. Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy[J]. Optics Letters, 2014, 39(20): 5826-5829.

    [51] Wang L, Cao Y, Wan M, et al. Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier[J]. Optics Express, 2016, 24(26): 29705-29713.

    [52] Li Z, Alam S U, Jung Y, et al. All-fiber, ultra-wide band tunable laser at 2 μm[J]. Optics Letters, 2013, 38(22): 4739-4742.

    [53] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135–1184.

    [54] Kumar V V R K, George A K, Reeves W H, et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[ J]. Optics Express, 2002, 10(25): 1520–1525.

    [55] Wright L G, Christodoulides D N, Wise F W. Controllable spatiotemporal nonlinear effects in multimode fibres[J]. Nature Photonics, 2015, 9: 306–310.

    Iroegbu Paul Ikechukwu, Huang Shihong, Li Yujia, Li Fuhui, Huang Ligang, Gao Lei, Bai Yongzhong, Qu Dingrong, Qiu Feng, Huang Xianbin, Zhu Tao. Laser sources for optical fiber sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 170684
    Download Citation