• Opto-Electronic Engineering
  • Vol. 49, Issue 5, 210382 (2022)
Ronggui Wang, Hui Lei, Juan Yang*, and Lixia Xue
Author Affiliations
  • School of Computer and Information, Hefei University of Technology, Hefei, Anhui 230601, China
  • show less
    DOI: 10.12086/oee.2022.210382 Cite this Article
    Ronggui Wang, Hui Lei, Juan Yang, Lixia Xue. Self-similarity enhancement network for image super-resolution[J]. Opto-Electronic Engineering, 2022, 49(5): 210382 Copy Citation Text show less
    Basic architectures.(a) The architecture of our proposed self-similarity enhancement network;(b) The cross-level feature enhancement module; (c) The pooling attention dense blocks
    Fig. 1. Basic architectures.

    (a) The architecture of our proposed self-similarity enhancement network;

    (b) The cross-level feature enhancement module; (c) The pooling attention dense blocks

    The proposed feature enhancement module
    Fig. 2. The proposed feature enhancement module
    Receptive field block
    Fig. 3. Receptive field block
    The proposed Cross-Level Co-Attention architec-ture. "Fgp" denotes the global average pooling
    Fig. 4. The proposed Cross-Level Co-Attention architec-ture. "Fgp" denotes the global average pooling
    Schematic illustration of the pooling attention
    Fig. 5. Schematic illustration of the pooling attention
    Super-resolution results of " Img048" in Urban100 dataset for 4× magnification
    Fig. 6. Super-resolution results of " Img048" in Urban100 dataset for 4× magnification
    Super-resolution results of " Img092" in Urban100 dataset for 4× magnification
    Fig. 7. Super-resolution results of " Img092" in Urban100 dataset for 4× magnification
    Super-resolution results of " 223061" in BSD100 dataset for 4× magnification
    Fig. 8. Super-resolution results of " 223061" in BSD100 dataset for 4× magnification
    Super-resolution results of " 253027" in BSD100 dataset for 4× magnification
    Fig. 9. Super-resolution results of " 253027" in BSD100 dataset for 4× magnification
    Convergence analysis on CLFE and PADB. The curves for each combination are based on the PSNR on Set5 with scaling factor 4× in 800 epochs.
    Fig. 10. Convergence analysis on CLFE and PADB. The curves for each combination are based on the PSNR on Set5 with scaling factor 4× in 800 epochs.
    Results of each module in the network.(a) The result of first layer convolution; (b) The results of cross-level feature enhancement module;(c) The results of Stacked pooling attention dense blocks
    Fig. 11. Results of each module in the network.

    (a) The result of first layer convolution; (b) The results of cross-level feature enhancement module;

    (c) The results of Stacked pooling attention dense blocks

    ScaleMethodSet5Set14BSD100Urban100Manga109
    PSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIMPSNR/SSIM
    Bicubic33.66/0.929930.24/0.868829.56/0.843126.88/0.840930.80/0.9339
    SRCNN[7]36.66/0.954232.45/0.906731.36/0.887929.50/0.894635.60/0.9663
    VDSR[8]37.53/0.959033.05/0.913031.90/0.896030.77/0.914037.22/0.9750
    M2SR[23]38.01/0.960733.72/0.920232.17/0.899732.20/0.929538.71/0.9772
    LapSRN[34]37.52/0.959133.08/0.913031.80/0.895030.41/0.910037.27/0.9740
    PMRN[35]38.13/0.960933.85/0.920432.28/0.901032.59/0.932838.91/0.9775
    OISR-RK2[37]38.12/0.960933.80/0.919332.26/0.900632.48/0.9317
    DBPN[38]38.09/0.960033.85/0.919032.27/0.900032.55/0.932438.89/0.9775
    RDN[36]38.24/0.961434.01/0.921232.34/0.901732.89/0.935339.18/0.9780
    SSEN(ours)38.11/0.960933.92/0.920432.28/0.901132.87/0.935139.06/0.9778
    Bicubic30.39/0.868227.55/0.774227.21/0.738524.46/0.734926.96/0.8546
    SRCNN[7]32.75/0.909029.28/0.820928.41/0.786326.24/0.798930.59/0.9107
    VDSR[8]33.66/0.921329.77/0.831428.82/0.797627.14/0.827932.01/0.9310
    M2SR[23]34.43/0.927530.39/0.844029.11/0.805628.29/0.855133.59/0.9447
    LapSRN[34]33.82/0.922729.79/0.832028.82/0.797327.07/0.827232.19/0.9334
    PMRN[35] OISR-RK2[37]34.57/0.9280 34.55/0.9282 30.43/0.8444 30.46/0.8443 29.19/0.8075 29.18/0.8075 28.51/0.8601 28.50/0.8597 33.85/0.9465 −
    RDN[36]34.71/0.929630.57/0.846829.26/0.809328.80/0.865334.13/0.9484
    SSEN(ours)34.64/0.928930.53/0.846229.20/0.807928.66/0.863534.01/0.9474
    Bicubic28.42/0.810426.00/0.702725.96/0.667523.14/0.657724.89/0.7866
    SRCNN[7]30.48/0.862827.50/0.751326.90/0.710124.52/0.722127.58/0.8555
    VDSR[8]31.35/0.883828.02/0.768027.29/0.726025.18/0.754028.83/0.8870
    M2SR[23]32.23/0.895228.67/0.783727.60/0.737326.19/0.788930.51/0.9093
    LapSRN[34]31.54/0.885028.19/0.772027.32/0.727025.21/0.755129.09/0.8900
    PMRN[35]32.34/0.897128.71/0.785027.66/0.739226.37/0.795030.71/0.9107
    OISR-RK2[37]32.32/0.896528.72/0.784327.66/0.739026.37/0.7953
    DBPN[38]32.47/0.898028.82/0.786027.72/0.740026.38/0.794630.91/0.9137
    RDN[36]32.47/0.899028.81/0.787127.72/0.741926.61/0.802831.00/0.9151
    SSEN(ours)32.42/0.898228.79/0.786427.69/0.740026.49/0.799330.88/0.9132
    Table 1. The average results of PSNR/SSIM with scale factor 2×,3× and 4× on datasets Set5,Set14,BSD100,Urban100 and Manga109
    Baseline
    CLFE××
    Cascaded PADB××
    PSNR/dB32.2832.3532.3732.42
    SSIM0.89620.89710.89720.8982
    Table 2. The results of cross-level and feature enhancement module and pooling attention dense block with scale factor 4× on Set5
    模型参数计算量PSNR/dBSSIM
    RDN[36]22M5096G34.010.9212
    OISR-RK3[37]42M9657G33.940.9206
    DBPN[38]10M2189G33.850.9190
    EDSR[39]41M9385G33.920.9195
    SSEN15M3436G33.920.9204
    Table 3. Model size and MAC comparison on Set14 (2×), "MAC" denotes the number of multiply-accumulate operations
    Ronggui Wang, Hui Lei, Juan Yang, Lixia Xue. Self-similarity enhancement network for image super-resolution[J]. Opto-Electronic Engineering, 2022, 49(5): 210382
    Download Citation