• Journal of Semiconductors
  • Vol. 44, Issue 11, 111301 (2023)
Haitao Chen1、2、3, Hongyuan Cao1, Zejie Yu1, Weike Zhao1, and Daoxin Dai1、4、*
Author Affiliations
  • 1State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
  • 2College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
  • 3Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • 4Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
  • show less
    DOI: 10.1088/1674-4926/44/11/111301 Cite this Article
    Haitao Chen, Hongyuan Cao, Zejie Yu, Weike Zhao, Daoxin Dai. Waveguide-integrated optical modulators with two-dimensional materials[J]. Journal of Semiconductors, 2023, 44(11): 111301 Copy Citation Text show less
    References

    [1] N Srivastava, K Banerjee. Interconnect challenges for nanoscale electronic circuits. JOM, 56, 30(2004).

    [2] D Inniss, R Rubenstein. Silicon photonics: fueling the next information revolution. Morgan Kaufmann(2016).

    [3] J Wang, Y Long. On-chip silicon photonic signaling and processing: A review. Sci Bull, 63, 1267(2018).

    [4] D Thomson, A Zilkie, J E Bowers et al. Roadmap on silicon photonics. J Opt, 18, 073003(2016).

    [5] D F Guo, K Hou, W J Tang et al. Silicon polarization switch based on symmetric polarization splitter-rotators. J Semicond, 40, 100401(2019).

    [6] H M Wang, H Y Chai, Z R Lv et al. Silicon photonic transceivers for application in data centers. J Semicond, 41, 101301(2020).

    [7] X Fu, D Dai. Ultra-small Si-nanowire-based 400 GHz-spacing 15 × 15 arrayed-waveguide grating router with microbends. Electron Lett, 47, 266(2011).

    [8] W Bogaerts, P De Heyn, T Van Vaerenbergh et al. Silicon microring resonators. Laser Photonics Rev, 6, 47(2012).

    [9] D X Dai, J Bauters, J E Bowers. Passive technologies for future large-scale photonic integrated circuits on silicon: Polarization handling, light non-reciprocity and loss reduction. Light Sci Appl, 1, e1(2012).

    [10] D X Dai, L Liu, S M Gao et al. Polarization management for silicon photonic integrated circuits. Laser Photonics Rev, 7, 303(2013).

    [11] Z P Zhou, B Yin, J Michel. On-chip light sources for silicon photonics. Light Sci Appl, 4, e358(2015).

    [12] X Wang, Z Su, Z Zhou. Recent progress of silicon photonics. Scientia Sinica Physica, 45, 014201(2015).

    [13] W Bogaerts, L Chrostowski. Silicon photonics circuit design: Methods, tools and challenges. Laser Photonics Rev, 12, 1700237(2018).

    [14] S T Liu, A Khope. Latest advances in high-performance light sources and optical amplifiers on silicon. J Semicond, 42, 041307(2021).

    [15] G T Reed, G Mashanovich, F Y Gardes et al. Silicon optical modulators. Nature Photon, 4, 518(2010).

    [16] M Liu, X B Yin, E Ulin-Avila et al. A graphene-based broadband optical modulator. Nature, 474, 64(2011).

    [17] Z P Sun, A Martinez, F Wang. Optical modulators with 2D layered materials. Nature Photon, 10, 227(2016).

    [18] D X Dai, J Li, Y L Yin. Silicon-plus photonics for light manipulation and photodetection. Proc. SPIE 10812, Semiconductor Lasers and Applications VIII, 1082(2018).

    [19] X X Wang, J F Liu. Emerging technologies in Si active photonics. J Semicond, 39, 061001(2018).

    [20] Y K Su, Y Zhang, C Y Qiu et al. Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications. Adv Mater Technol, 5, 1901153(2020).

    [21] D Marris-Morini, V Vakarin, J M Ramirez et al. Germanium-based integrated photonics from near- to mid-infrared applications. Nanophotonics, 7, 1781(2018).

    [22] J M Ramirez, H Elfaiki, T Verolet et al. III-V-on-silicon integration: From hybrid devices to heterogeneous photonic integrated circuits. IEEE J Sel Top Quantum Electron, 26, 1(2020).

    [23] F Semond. Epitaxial challenges of GaN on silicon. MRS Bull, 40, 412(2015).

    [24] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [25] A K Geim. Graphene: Status and prospects. Science, 324, 1530(2009).

    [26] J R Schaibley, H Y Yu, G Clark et al. Valleytronics in 2D materials. Nat Rev Mater, 1, 16055(2016).

    [27] S Manzeli, D Ovchinnikov, D Pasquier et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2, 17033(2017).

    [28] H Chen, M Liu, L Xu et al. Valley-selective directional emission from a transition-metal dichalcogenide monolayer mediated by a plasmonic nanoantenna, Beilstein. J. Nanotechnol, 9, 780(2018).

    [29] T Jiang, K Yin, C Wang et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Research, 8, 78(2020).

    [30] K S Novoselov, A K Geim, S V Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

    [31] F N Xia, H Wang, D Xiao et al. Two-dimensional material nanophotonics. Nat Photonics, 8, 899(2014).

    [32] J D Caldwell, I Aharonovich, G Cassabois et al. Photonics with hexagonal boron nitride. Nat Rev Mater, 4, 552(2019).

    [33] M M Luo, T J Fan, Y Zhou et al. 2D black phosphorus–based biomedical applications. Adv Funct Mater, 29, 1808306(2019).

    [34] A Acun, L Zhang, P Bampoulis et al. Germanene: The germanium analogue of graphene. J Phys: Condens Matter, 27, 443002(2015).

    [35] N Youngblood, M Li. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 6, 1205(2016).

    [36] D Akinwande, C Huyghebaert, C H Wang et al. Graphene and two-dimensional materials for silicon technology. Nature, 573, 507(2019).

    [37] Y L Yin, J Li, Y Xu et al. Silicon-graphene photonic devices. J Semicond, 39, 061009(2018).

    [38] D X Dai, J Li, L J Song. Silicon-plus photonic devices for on-chip light-manipulation and photodetection. Proc. SPIE 11182, Semiconductor Lasers and Applications IX, 1118206(2019).

    [39] Y H Tang, K F Mak. 2D materials for silicon photonics. Nature Nanotech, 12, 1121(2017).

    [40] H T Chen, S Nanz, A Abass et al. Enhanced directional emission from monolayer WSe2 integrated onto a multiresonant silicon-based photonic structure. ACS Photonics, 4, 3031(2017).

    [41] J S Ross, S F Wu, H Y Yu et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun, 4, 1474(2013).

    [42] J S Ross, P Klement, A M Jones et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotechnol, 9, 268(2014).

    [43] J Yang, R J Xu, J J Pei et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci Appl, 4, e312(2015).

    [44] H Ouyang, H T Chen, Y X Tang et al. All-optical dynamic tuning of local excitonic emission of monolayer MoS2 by integration with Ge2Sb2Te5. Nanophotonics, 9, 2351(2020).

    [45] S Mouri, Y Miyauchi, K Matsuda. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett, 13, 5944(2013).

    [46] Z W Li, Y W Lv, L W Ren et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat Commun, 11, 1151(2020).

    [47] K S Novoselov, A Mishchenko, A Carvalho et al. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).

    [48] Y Liu, N O Weiss, X D Duan et al. Van der waals heterostructures and devices. Nat Rev Mater, 1, 16042(2016).

    [49] M Gibertini, M Koperski, A F Morpurgo et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 14, 408(2019).

    [50] K Wei, T Jiang, Z J Xu et al. Hybrid perovskites: Ultrafast carrier transfer promoted by interlayer coulomb coupling in 2D/3D perovskite heterostructures (laser photonics rev. 12(10)/2018). Laser Photonics Rev, 12, 1870043(2018).

    [51] K Wei, Y Z Sui, Z J Xu et al. Acoustic phonon recycling for photocarrier generation in graphene-WS2 heterostructures. Nat Commun, 11, 3876(2020).

    [52] H Dalir, Y Xia, Y Wang et al. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 3, 1564(2016).

    [53] M Mohsin, D Schall, M Otto et al. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt Express, 22, 15292(2014).

    [54] Z L Lu, W S Zhao. Nanoscale electro-optic modulators based on graphene-slot waveguides. J Opt Soc Am B, 29, 1490(2012).

    [55] J Y Jiao, R Hao, Z Zhen et al. Optimization of graphene-based slot waveguides for efficient modulation. IEEE J Sel Top Quantum Electron, 26, 1(2020).

    [56] Z Cheng, X L Zhu, M Galili et al. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 9, 2377(2020).

    [57] Z Shi, L Gan, T H Xiao et al. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics, 2, 1513(2015).

    [58] Y Ding, X Guan, X Zhu et al. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 9, 15576(2017).

    [59] M Ono, M Hata, M Tsunekawa et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics, 14, 37(2020).

    [60] C T Phare, Y H D Lee, J Cardenas et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics, 9, 511(2015).

    [61] S Gan, C T Cheng, Y H Zhan et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 7, 20249(2015).

    [62] Z Z Xu, C Y Qiu, Y X Yang et al. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Opt Express, 25, 19479(2017).

    [63] Z Jafari, A Zarifkar, M Miri et al. All-optical modulation in a graphene-covered slotted silicon nano-beam cavity. J Light Technol, 36, 4051(2018).

    [64] Z Chai, X Hu, F Wang et al. Ultrafast All-Optical Switching. Adv Opt Mater, 5, 1600665(2017).

    [65] Y H Yao, Z Cheng, J J Dong et al. Performance of integrated optical switches based on 2D materials and beyond. Front Optoelectron, 13, 129(2020).

    [66] S L Yu, X Q Wu, Y P Wang et al. 2D materials for optical modulation: Challenges and opportunities. Adv Mater, 29, 1606128(2017).

    [67] H T Chen, C Wang, H Ouyang et al. All-optical modulation with 2D layered materials: Status and prospects. Nanophotonics, 9, 2107(2020).

    [68] J You, Y K Luo, J Yang et al. Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev, 14, 2000239(2020).

    [69] X Gan, D Englund, D Van Thourhout et al. 2D materials-enabled optical modulators: From visible to terahertz spectral range. Appl Phys Rev, 9, 021302(2022).

    [70] H Y Yang, Y Z Wang, Z C Tiu et al. All-optical modulation technology based on 2D layered materials. Micromachines, 13, 92(2022).

    [71] G Z Wang, A A Baker-Murray, W J Blau. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photonics Rev, 13, 1800282(2019).

    [72] Q Li, J Lu, P Gupta et al. Engineering optical absorption in graphene and other 2D materials: Advances and applications. Adv Opt Mater, 7, 1900595(2019).

    [73] J L Cheng, J E Sipe, N Vermeulen et al. Nonlinear optics of graphene and other 2D materials in layered structures. J Phys Photonics, 1, 015002(2018).

    [74] K Wu, Y F Wang, C Y Qiu et al. Thermo-optic all-optical devices based on two-dimensional materials. Photon Res, 6, C22(2018).

    [76] D A B Miller. Energy consumption in optical modulators for interconnects. Opt Express, 20, A293(2012).

    [77] I Datta, S H Chae, G R Bhatt et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat Photonics, 14, 256(2020).

    [78] Z Cheng, R Cao, J Guo et al. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 9, 1973(2020).

    [79] H T Lin, Y Song, Y Z Huang et al. Chalcogenide glass-on-graphene photonics. Nature Photon, 11, 798(2017).

    [80] X Z Bao, Q D Ou, Z Q Xu et al. Band structure engineering in 2D materials for optoelectronic applications. Adv Mater Technol, 3, 1800072(2018).

    [81] F Wang, Y B Zhang, C S Tian et al. Gate-variable optical transitions in graphene. Science, 320, 206(2008).

    [82] Y P Liu, K Tom, X Wang et al. Dynamic control of optical response in layered metal chalcogenide nanoplates. Nano Lett, 16, 488(2016).

    [83] M Liu, X B Yin, X Zhang. Double-layer graphene optical modulator. Nano Lett, 12, 1482(2012).

    [84] N Youngblood, Y Anugrah, R Ma et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett, 14, 2741(2014).

    [85] V Sorianello, M Midrio, G Contestabile et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat Photonics, 12, 40(2018).

    [86] H Agarwal, B Terrés, L Orsini et al. 2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulators. Nat Commun, 12, 1(2021).

    [87] S J Koester, M Li. High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl Phys Lett, 100, 171107(2012).

    [88] R Hao, J M Jin. Graphene embedded modulator with extremely small footprint and high modulation efficiency. J Photonics, 2014, 309350(2014).

    [89] R Hao, Z W Ye, Y J Gu et al. Large modulation capacity in graphene-based slot modulators by enhanced hybrid plasmonic effects. Sci Rep, 8, 16830(2018).

    [90] M Midrio, P Galli, M Romagnoli et al. Graphene-based optical phase modulation of waveguide transverse electric modes. Photon Res, 2, A34(2014).

    [91] C Y Qiu, W L Gao, R Vajtai et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett, 14, 6811(2014).

    [92] Y H Ding, X L Zhu, S S Xiao et al. Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett, 15, 4393(2015).

    [93] S Y Luo, Y N Wang, X Tong et al. Graphene-based optical modulators. Nanoscale Res Lett, 10, 1(2015).

    [94] Y X Shi, J S Li, L Zhang. Graphene-integrated split-ring resonator terahertz modulator. Opt Quantum Electron, 49, 350(2017).

    [95] C Xu, Y C Jin, L Z Yang et al. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide. Opt Express, 20, 22398(2012).

    [96] L Z Yang, T Hu, R Hao et al. Low-chirp high-extinction-ratio modulator based on graphene–silicon waveguide. Opt Lett, 38, 2512(2013).

    [97] R Hao, W Du, H S Chen et al. Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl Phys Lett, 103, 061161(2013).

    [98] M Mohsin, D Neumaier, D Schall et al. Experimental verification of electro-refractive phase modulation in graphene. Sci Rep, 5, 10967(2015).

    [99] S W Ye, Z S Wang, L F Tang et al. Electro-absorption optical modulator using dual-graphene-on-graphene configuration. Opt Express, 22, 26173(2014).

    [100] Y D Gao, R J Shiue, X T Gan et al. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Lett, 15, 2001(2015).

    [101] Y T Hu, M Pantouvaki, J Van Campenhout et al. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photonics Rev, 10, 307(2016).

    [102] S W Ye, F Yuan, X H Zou et al. High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J Sel Top Quantum Electron, 23, 76(2017).

    [103] Z J Yu, Y Wang, B L Sun et al. Hybrid 2D-material photonics with bound states in the continuum. Adv Optical Mater, 7, 1901306(2019).

    [104] C Luan, D M Kong, Y H Ding et al. High-modulation-efficiency graphene-silicon slot-waveguide micro-ring modulator. Conference on Lasers and Electro-Optics, San Jose(2022).

    [105] J Gosciniak, D T H Tan. Theoretical investigation of graphene-based photonic modulators. Sci Rep, 3, 1897(2013).

    [106] X T Gan, C Y Zhao, Y D Wang et al. Graphene-assisted all-fiber phase shifter and switching. Optica, 2, 468(2015).

    [107] E J Lee, S Y Choi, H Jeong et al. Active control of all-fibre graphene devices with electrical gating. Nat Commun, 6, 6851(2015).

    [108] Y Z Hu, J You, M Y Tong et al. Metaphotonic devices: Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices (adv. sci. 14/2020). Adv Sci, 7, 2070080(2020).

    [109] Q L Bao, H Zhang, Y Wang et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 19, 3077(2009).

    [110] Z P Sun, T Hasan, F Torrisi et al. Graphene mode-locked ultrafast laser. ACS Nano, 4, 803(2010).

    [111] B T Zhang, J Liu, C Wang et al. Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers. Laser Photonics Rev, 14, 1900240(2020).

    [112] E Hendry, P J Hale, J Moger et al. Coherent nonlinear optical response of graphene. Phys Rev Lett, 105, 097401(2010).

    [113] J Wang, Y Hernandez, M Lotya et al. Broadband nonlinear optical response of graphene dispersions. Adv Mater, 21, 2430(2009).

    [114] Q L Bao, H Zhang, B Wang et al. Broadband graphene polarizer. Nat Photonics, 5, 411(2011).

    [115] L H Yu, J J Zheng, Y Xu et al. Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits. ACS Nano, 8, 11386(2014).

    [116] K J A Ooi, P C Leong, L K Ang et al. All-optical control on a graphene-on-silicon waveguide modulator. Sci Rep, 7, 1(2017).

    [117] P Demongodin, H El Dirani, J Lhuillier et al. Ultrafast saturable absorption dynamics in hybrid graphene/Si3N4 waveguides. APL Photonics, 4, 076102(2019).

    [118] H Wang, N N Yang, L M Chang et al. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photon Res, 8, 468(2020).

    [119] H T Chen, V Corboliou, A S Solntsev et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci Appl, 6, e17060(2017).

    [120] S Yang, D C Liu, Z L Tan et al. CMOS-compatible WS2-based all-optical modulator. ACS Photonics, 5, 342(2018).

    [121] M Klein, B H Badada, R Binder et al. 2D semiconductor nonlinear plasmonic modulators. Nat Commun, 10, 3264(2019).

    [122] F Y Sun, L P Xia, C B Nie et al. An all-optical modulator based on a graphene–plasmonic slot waveguide at 1550 nm. Appl Phys Express, 12, 042009(2019).

    [123] F Y Sun, L P Xia, C B Nie et al. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure. Nanotechnology, 29, 135201(2018).

    [124] M Alaloul, J B Khurgin. High-performance all-optical modulator based on graphene-HBN heterostructures. IEEE J Sel Top Quantum Electron, 28, 1(2022).

    [125] S L Yu, C Meng, B G Chen et al. Graphene decorated microfiber for ultrafast optical modulation. Opt Express, 23, 10764(2015).

    [126] W Li, B G Chen, C Meng et al. Ultrafast all-optical graphene modulator. Nano Lett, 14, 955(2014).

    [127] D Sun, Z K Wu, C Divin et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys Rev Lett, 101, 157402(2008).

    [128] P Dong, W Qian, H Liang et al. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt Express, 18, 20298(2010).

    [129] P Dong, R Shafiiha, S R Liao et al. Wavelength-tunable silicon microring modulator. Opt Express, 18, 10941(2010).

    [130] J Renteria, D Nika, A Balandin. Graphene thermal properties: Applications in thermal management and energy storage. Appl Sci, 4, 525(2014).

    [131] J M Kang, H Kim, K S Kim et al. High-performance graphene-based transparent flexible heaters. Nano Lett, 11, 5154(2011).

    [132] L H Yu, Y C Shi, S L He et al. Tunable silicon micro-disk resonator with flexible graphene-based ultra-thin heaters. Asia Communications and Photonics Conference 2015(2015).

    [133] L Yu, S He, J Zheng et al. Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices. Progress in Electromagnetics Research Symposium, 1735(2014).

    [134] L H Yu, Y L Yin, Y C Shi et al. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 3, 159(2016).

    [135] S Q Yan, X L Zhu, L H Frandsen et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat Commun, 8, 14411(2017).

    [136] C Y Qiu, Y X Yang, C Li et al. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci Rep, 7, 17046(2017).

    [137] Y J Liu, H D Wang, S Wang et al. Highly efficient silicon photonic microheater based on black arsenic–phosphorus. Adv Optical Mater, 8, 1901526(2020).

    [138] H Y Cao, H T Chen, Y Pan et al. Efficient and fast all-optical modulator with in situ grown MoTe2 nanosheets on silicon. ACS Appl Nano Mater, 6, 838(2023).

    [139] L H Yu, D X Dai, S L He. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl Phys Lett, 105, 251104(2014).

    [140] K K Wei, D L Li, Z T Lin et al. All-optical PtSe2 silicon photonic modulator with ultra-high stability. Photon Res, 8, 1189(2020).

    [141] Z W Li, Q Liu, H Wang et al. Photo-induced thermo-optical refraction switching by a graphene-assisted silicon microring resonator. J Light Technol, 39, 3471(2021).

    [142] T Guo, S Gao, H Y Zeng et al. All-optical control of a single resonance in a graphene-on-silicon nanobeam cavity using thermo-optic effect. J Light Technol, 39, 4710(2021).

    [143] C Y Qiu, C Zhang, H Y Zeng et al. High-performance graphene-on-silicon nitride all-optical switch based on a Mach–Zehnder interferometer. J Light Technol, 39, 2099(2021).

    [144] S Nakamura, K Sekiya, S Matano et al. High-speed and on-chip optical switch based on a graphene microheater. ACS Nano, 16, 2690(2022).

    [145] F Bonaccorso, Z Sun, T Hasan et al. Graphene photonics and optoelectronics. Nat Photonics, 4, 611(2010).

    [146] N Gruhler, C Benz, H Jang et al. High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices. Opt Express, 21, 31678(2013).

    [147] X T Gan, R J Shiue, Y D Gao et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics, 7, 883(2013).

    [148] H Li, Y Anugrah, S J Koester et al. Optical absorption in graphene integrated on silicon waveguides. Appl Phys Lett, 101, 111110(2012).

    [149] D Schall, D Neumaier, M Mohsin et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics, 1, 781(2014).

    [150] L O Nyakiti, V D Wheeler, N Y Garces et al. Enabling graphene-based technologies: Toward wafer-scale production of epitaxial graphene. MRS Bull, 37, 1149(2012).

    [151] C C Huang, F Al-Saab, Y D Wang et al. Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature. Nanoscale, 6, 12792(2014).

    [152] L Zhou, K Xu, A Zubair et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J Am Chem Soc, 137, 11892(2015).

    [153] L Colombo, R M Wallace, R S Ruoff. Graphene growth and device integration. Proc IEEE, 101, 1536(2013).

    [154] B Lee, G Mordi, M J Kim et al. Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices. Appl Phys Lett, 97, 043107(2010).

    [155] J R Williams, L DiCarlo, C M Marcus. Quantum Hall effect in a gate-controlled p-n junction of graphene. Science, 317, 638(2007).

    [156] X R Wang, S M Tabakman, H J Dai. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J Am Chem Soc, 130, 8152(2008).

    [157] Z J Yu, X Xi, J W Ma et al. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342(2019).

    [158] Z J Yu, Y Y Tong, H K Tsang et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun, 11, 2602(2020).

    [159] W L Barnes, A Dereux, T W Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824(2003).

    [160] S I Bozhevolnyi, V S Volkov, E Devaux et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440, 508(2006).

    [161] D K Gramotnev, S I Bozhevolnyi. Plasmonics beyond the diffraction limit. Nature Photon, 4, 83(2010).

    [162] H T Chen, J Yang, E Rusak et al. Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas. Sci Rep, 6, 22296(2016).

    [163] W B He, H T Chen, H Ouyang et al. Tunable anisotropic plasmon response of monolayer GeSe nanoribbon arrays. Nanoscale, 12, 16762(2020).

    [164] K F MacDonald, Z L Sámson, M I Stockman et al. Ultrafast active plasmonics. Nat Photonics, 3, 55(2009).

    [165] M Ono, H Taniyama, H Xu et al. Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 3, 999(2016).

    [166] B H Huang, W B Lu, X B Li et al. Waveguide-coupled hybrid plasmonic modulator based on graphene. Appl Opt, 55, 5598(2016).

    [167] J Gosciniak, D T H Tan. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology, 24, 185202(2013).

    [168] J T Kim, K H Chung, C G Choi. Thermo-optic mode extinction modulator based on graphene plasmonic waveguide. Opt Express, 21, 15280(2013).

    [169] M H Rezaei, A Zarifkar. Graphene-based plasmonic electro-optical SR flip-flop with an ultra-compact footprint. Opt Express, 28, 25167(2020).

    [170] M Shirdel, M Ali Mansouri-Birjandi. A broadband graphene modulator based on plasmonic valley-slot waveguide. Opt Quantum Electron, 52, 36(2020).

    [171] D Ansell, I P Radko, Z Han et al. Hybrid graphene plasmonic waveguide modulators. Nat Commun, 6, 8846(2015).

    [172] N Mounet, M Gibertini, P Schwaller et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 13, 246(2018).

    [173] I Staude, J Schilling. Metamaterial-inspired silicon nanophotonics. Nature Photon, 11, 274(2017).

    [174] H N Xu, D X Dai, Y C Shi. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials. Laser Photonics Rev, 13, 1800349(2019).

    [175] Y Wang, J Y Yu, Y F Mao et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature, 581, 401(2020).

    [176] D X Dai, Y C Shi, S L He et al. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express, 19, 12925(2011).

    [177] G Z Liang, H Q Huang, A Mohanty et al. Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat Photonics, 15, 908(2021).

    [178] B C Pan, J Y Hu, Y S Huang et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-µm wavelength. Opt Express, 29, 17710(2021).

    Haitao Chen, Hongyuan Cao, Zejie Yu, Weike Zhao, Daoxin Dai. Waveguide-integrated optical modulators with two-dimensional materials[J]. Journal of Semiconductors, 2023, 44(11): 111301
    Download Citation