• Laser & Optoelectronics Progress
  • Vol. 55, Issue 3, 030007 (2018)
Jiaqi Chen, Guoqiu Yuan, Meng Wang, and Min Cao*
Author Affiliations
  • School of Science, Nantong University, Nantong, Jiangsu 226019, China
  • show less
    DOI: 10.3788/LOP55.030007 Cite this Article Set citation alerts
    Jiaqi Chen, Guoqiu Yuan, Meng Wang, Min Cao. Advances in Directional Control of Surface Plasmon Amplification by Stimulated Emission of Radiation[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030007 Copy Citation Text show less
    References

    [1] Dou X J, Min C J, Zhang Y Q et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 36, 1026004(2016).

    [2] Zhong X L, Li Z Y. All-analytical semiclassical theory of spaser performance in a plasmonic nanocavity[J]. Physical Review B, 88, 838-853(2013). http://adsabs.harvard.edu/abs/2013arXiv1303.3673Z

    [3] Wang Z L. A review on research progress in surface plasmons[J]. Progress in Physics, 29, 287-324(2009).

    [4] Pan J. The design of novel plasmonic waveguides, lasers and the study of optical properties of double-triangle nanoparticle arrays[D]. Nanjing: Nanjing University(2012).

    [5] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [6] Ma R M, Oulton R F, Sorger V J et al. Plasmon lasers: coherent light source at molecular scales[J]. Laser & Photonics Reviews, 7, 1-21(2013). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201100040/pdf

    [7] Xian J, Chen L, Niu H et al. Significant field enhancements in an individual silver nanoparticle near a substrate covered with a thin gain film[J]. Nanoscale, 6, 13994-14001(2014). http://www.ncbi.nlm.nih.gov/pubmed/25317661

    [8] Guo Q B, Liu X F, Qiu J R. Research progress of ultrafast nonlinear optics and applications of nanostructures with localized plasmon resonance[J]. Chinese Journal of Lasers, 44, 0703005(2017).

    [9] Gu Y, Wang L K, Gong Q H. A theoretical study of plasmonic-based quantum interference effects[J]. Scientia Sinica Physica, Mechanica & Astronomica, 43, 1120-1134(2013).

    [10] Li Z Y, Li J F. Recent progress in engineering and application of surface plasmon resonance in metal nanostructures[J]. Chinese Science Bulletin, 56, 2631-2661(2011).

    [11] Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 54, 030002(2017).

    [12] Wu C Y, Kuo C T, Wang C Y et al. Plasmonic green nanolaser based on a metal-oxide-semiconductor structure[J]. Nano Letters, 11, 4256-4260(2011). http://europepmc.org/abstract/MED/21882819

    [13] Oulton R F. Surface plasmon lasers: Sources of nanoscopic light[J]. Mater Today, 15, 26-34(2012). http://www.sciencedirect.com/science/article/pii/S1369702112700184

    [14] Cao M, Wang M, Gu N. Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications[J]. The Journal of Physical Chemistry C, 113, 1217-1221(2009). http://pubs.acs.org/doi/pdf/10.1021/jp808000x

    [15] Cao M, Wang M, Gu N. Plasmon singularities from metal nanoparticles in active media: influence of particle shape on the gain threshold[J]. Plasmonics, 7, 347-351(2011). http://link.springer.com/article/10.1007/s11468-011-9313-5

    [16] Zhang Y, Li J, Wu Y et al. Spaser based on dark quadrupolar mode of a single metallic nanodisk[J]. Plasmonics, 12, 1983-1990(2017). http://link.springer.com/10.1007/s11468-016-0471-3

    [17] Gu Y, Wang L J, Gong Q H. A theoretical study of plasmonic-based quantum interference effects[J]. Scientia Sinica Physica, Mechanica & Astronomica, 43, 1120(2013).

    [18] Chang D E, Sørensen A S, Hemmer P R et al. Quantum optics with surface plasmons[J]. Physical Review Letters, 97, 053002(2006). http://europepmc.org/abstract/MED/17026098

    [19] Gonzalez-Tudela A, Martin-Cano D, Moreno E et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides[J]. Physical Review Letters, 106, 020501(2011). http://www.ncbi.nlm.nih.gov/pubmed/21405211/

    [20] Chen H, Shao L, Woo K C et al[J]. Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer Journal of Physical Chemistry C, 2012, 14088-14095.

    [21] Schlather A E, Large N, Urban A S et al. Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers[J]. Nano Letters, 13, 3281-3286(2013). http://pubs.acs.org/doi/abs/10.1021/nl4014887

    [22] Manjavacas A. Abajo F J G, Nordlander P. Quantum plexcitonics: strongly interacting plasmons and excitons[J]. Nano Letters, 11, 2318-2323(2011).

    [23] Chen H Y, Liu K W, Jiang M M et al[J]. Tunable hybridized quadrupole plasmons and their coupling with excitons in znmgo/ag system Journal of Physical Chemistry C, 2014, 679-684.

    [24] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 90, 027402(2003). http://europepmc.org/abstract/MED/12570577

    [25] Hill M T, Gather M C. Advances in small lasers[J]. Nature Photonics, 8, 908-918(2014).

    [26] Cao X W, Zhang L, Yu Y S et al. Application of micro-optical components fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 44, 0102004(2017).

    [27] Noginov M A, Zhu G, Belgrave A M et al. Demonstration of a spaser-based nanolaser[J]. Nature, 460, 1110-1112(2009).

    [28] Veltri A, Chipouline A, Aradian A. Multipolar, time-dynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium[J]. Scientific Reports, 6, 33018(2016). http://www.nature.com/articles/srep33018

    [29] Hore M J, Ye X, Ford J et al. Probing the structure, composition, and spatial distribution of ligands on gold nanorods[J]. Nano Letters, 15, 5730-5738(2015). http://www.ncbi.nlm.nih.gov/pubmed/26292087

    [30] Munkhbat B, Ziegler J, Pohl H et al. Hybrid multilayered plasmonic nanostars for coherent random lasing[J]. The Journal of Physical Chemistry C, 120, 23707-23715(2016). http://europepmc.org/articles/PMC5075942/

    [31] Zheng C, Jia T, Zhao H et al. Low threshold tunable spaser based on multipolar Fano resonances in disk-ring plasmonic nanostructures[J]. Journal of Physics D: Applied Physics, 49, 015101(2016). http://adsabs.harvard.edu/abs/2016JPhD...49a5101Z

    [32] Li Z Q, Peng T, Zhang M et al. Nanolaser based on hybrid plasmonic wavguide[J]. Chinese Journal of Lasers, 43, 1001005(2016).

    [33] Oulton R F, Sorger V J, Zentgraf T et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 461, 629-632(2009). http://europepmc.org/abstract/med/19718019

    [34] Nezhad M P, Simic A, Bondarenko O et al. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics, 4, 395-399(2010). http://www.nature.com/nphoton/journal/v4/n6/abs/nphoton.2010.88.html

    [35] Ma R M, Oulton R F, Sorger V J et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials, 10, 110-113(2011). http://www.nature.com/sifinder/10.1038/nmat2919

    [36] Tang C J, Chen J, Pan J et al. Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell[J]. Optics Letters, 37, 1181-1183(2012). http://www.ncbi.nlm.nih.gov/pubmed/22466188

    [37] Ding P, He J, Wang J et al. Low-threshold surface plasmon amplification from a gain-assisted core-shell nanoparticle with broken symmetry[J]. Journal of Optics, 15, 105001(2013). http://adsabs.harvard.edu/abs/2013JOpt...15j5001D

    [38] Zhang C, Lu Y, Ni Y et al. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array[J]. Nano Letters, 15, 1382-1387(2015). http://pubs.acs.org/doi/pdf/10.1021/nl504689s

    [39] Wei W, Yan X, Zhang X. Ultrahigh Purcell factor in low-threshold nanolaser based on asymmetric hybrid plasmonic cavity[J]. Scientific Reports, 6, 33063(2016). http://europepmc.org/articles/PMC5018824/

    [40] Shishkov V Y, Zyablovskii A A, Andrianov E S et al. Wide-aperture planar lasers[J]. Journal of Communications Technology and Electronics, 61, 551-573(2016).

    [41] Tronciu V Z, Wünsche H J, Wolfrum M et al. Semiconductor laser under resonant feedback from a Fabry-Perot resonator: stability of continuous-wave operation[J]. Physical Review E, 73, 046205(2006). http://europepmc.org/abstract/MED/16711915

    [42] Corzine S W, Geels R S, Scott J W et al. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure[J]. IEEE Journal of Quantum Electronics, 25, 1513-1524(1989). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=29288

    [43] Arnold N, Ding B, Hrelescu C et al. Dye-doped spheres with plasmonic semi-shells: lasing modes and scattering at realistic gain levels[J]. Beilstein Journal of Nanotechnology, 4, 974-987(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC3896298/

    [44] Stockman M I. The spaser as a nanoscale quantum generator and ultrafast amplifier[J]. Journal of Optics, 12, 024004(2010). http://adsabs.harvard.edu/abs/2010JOpt...12b4004S

    [45] Berini P, De Leon I. Surface plasmon-polariton amplifiers and lasers[J]. Nature Photonics, 6, 16-24(2011). http://www.nature.com/nphoton/journal/v6/n1/abs/nphoton.2011.285.html

    [46] Ning C Z. Semiconductor nanolasers[J]. Progress in Physics, 31, 145-160(2011).

    [47] Kinkhabwala A, Yu Z, Fan S et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).

    [48] Pustovit V N, Shahbazyan T V, Grechko L G. Size-dependent effects in solutions of small metal nanoparticles[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 69, 369-374(2009). http://link.springer.com/article/10.1140/epjb/e2009-00173-8

    [49] Sheikholeslami S, Jun Y W, Jain P K et al. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer[J]. Nano Letters, 10, 2655-2660(2010). http://pubs.acs.org/doi/abs/10.1021/nl101380f

    [50] Pelton M, Bryant G. Introduction to metal-nanoparticle plasmonics[M]. New Jersey: John Wiley & Sons(2013).

    [51] Yu M, Song J, Niu H et al. Quadrupole plasmon lasers with a super low threshold based on an active three-layer nanoshell structure[J]. Plasmonics, 11, 231-239(2015). http://link.springer.com/article/10.1007/s11468-015-0039-7

    [52] Jule L. Mal'nev V, Mesfin B, et al. Fano-like resonance and scattering in dielectric(core)-metal(shell) composites embedded in active host matrices[J]. Physica Status Solidi B, 252, 2707-2713(2015).

    [53] Tao Y, Guo Z, Sun Y et al. Sliver spherical nanoshells coated gain-assisted ellipsoidal silica core for low-threshold surface plasmon amplification[J]. Optics Communications, 355, 580-585(2015). http://www.sciencedirect.com/science/article/pii/S0030401815006288

    [54] Khajavikhan M, Simic A, Katz M et al. Thresholdless nanoscale coaxial lasers[J]. Nature, 482, 204-207(2012). http://www.nature.com/abstractpagefinder/10.1038/nature10840

    [55] Zhang L, Zhou J, Zhang H et al. Ultra-strong surface plasmon amplification characteristic of a spaser based on gold-silver core-shell nanorods[J]. Optics Communications, 338, 313-321(2015). http://www.sciencedirect.com/science/article/pii/S0030401814010049

    [56] Song Y, Wang J, Yan M et al. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor[J]. Journal of optics, 13, 075001(2011). http://adsabs.harvard.edu/abs/2011JOpt...13g5001S

    [57] Moiseev E I, Kryzhanovskaya N, Polubavkina Y S et al. Light outcoupling from quantum dot-based microdisk laser via plasmonic nanoantenna[J]. ACS Photonics, 4, 275-281(2017). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.6b00552

    [58] Bozzola A. Perotto S, de Angelis F. Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review[J]. Analyst, 142, 883-898(2017).

    [59] Fang Z, Cai J, Yan Z et al. Removing a wedge from a metallic nanodisk reveals a Fano resonance[J]. Nano Letters, 11, 4475-4479(2011). http://pubs.acs.org/doi/abs/10.1021/nl202804y

    [60] Meng X, Guler U, Kildishev A V et al. Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity[J]. Scientific Reports, 3, 1241(2013). http://europepmc.org/articles/PMC3566612

    [61] Rycenga M, Cobley C M, Zeng J et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications[J]. Chemical Reviews, 111, 3669-3712(2011). http://europepmc.org/abstract/med/21395318

    [62] Genç A, Patarroyo J, Sancho-Parramon J et al. Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications[J]. Nanophotonics, 6, 1-21(2016).

    [63] Prodan E, Radloff C, Halas N J et al. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 302, 419-422(2003). http://www.jstor.org/stable/3835322

    [64] Prodan E, Nordlander P. Plasmon hybridization in spherical nanoparticles[J]. The Journal of Chemical Physics, 120, 5444-5454(2004). http://www.ncbi.nlm.nih.gov/pubmed/15267418

    [65] Li Q, Zhang Z. Bonding and anti-bonding modes of plasmon coupling effects in TiO2-Ag core-shell dimers[J]. Scientific Reports, 6, 19433(2016). http://europepmc.org/articles/PMC4725898

    [66] Erwin W R, Bardhan R. Directional scattering and sensing with bimetallic fanocubes: a complex Fano-resonant plasmonic nanostructure[J]. The Journal of Physical Chemistry C, 120, 29423-29431(2016). http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b10166

    [67] Totero Gongora J S, Miroshnichenko A E, Kivshar Y S et al. . Energy equipartition and unidirectional emission in a spaser nanolaser[J]. Laser & Photonics Reviews, 10, 432-440(2016). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201500239/full

    [68] Makarov S, Kudryashov S, Mukhin I et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma[J]. Nano Letters, 15, 6187-6192(2015). http://www.ncbi.nlm.nih.gov/pubmed/26259100

    [69] Liu K, Guo Y, Pu M et al. Wide field-of-view and broadband terahertz beam steering based on gap plasmon geodesic antennas[J]. Scientific Reports, 7, 41642(2017). http://www.ncbi.nlm.nih.gov/pubmed/28134324

    [70] Gmachl C. High-power directional emission from microlasers with chaotic resonators[J]. Science, 280, 1556-1564(1998). http://www.jstor.org/stable/2895953

    [71] Wiersig J, Hentschel M. Combining directional light output and ultralow loss in deformed microdisks[J]. Physical Review Letters, 100, 033901(2008). http://www.ncbi.nlm.nih.gov/pubmed/18232980

    [72] Kurdoglyan M S, Lee S Y, Rim S et al. Unidirectional lasing from a microcavity with a rounded isosceles triangleshape[J]. Optics Letters, 29, 2758-2760(2004). http://www.ncbi.nlm.nih.gov/pubmed/15605496

    [73] Kneissl M, Teepe M, Miyashita N et al. Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission[J]. Applied Physics Letters, 84, 2485-2487(2004). http://scitation.aip.org/content/aip/journal/apl/84/14/10.1063/1.1691494

    [74] Chang S, Chang R K, Stone A D et al. Observation of emission from chaotic lasing modes in deformed microspheres: displacement by the stable-orbit modes[J]. Journal of the Optical Society of America B, 17, 1828-1834(2000). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-17-11-1828

    [75] Mccall S L. Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers[J]. Applied Physics Letters, 60, 289-291(1992).

    [76] Wang T, Nijhuis C A. Molecular electronic plasmonics[J]. Applied Materials Today, 3, 73-86(2016).

    [77] Rai P, Hartmann N, Berthelot J et al. Electrical excitation of surface plasmons by an individual carbon nanotube transistor[J]. Physical Review Letters, 111, 026804(2013). http://europepmc.org/abstract/med/23889430

    [78] Huang K C Y, Seo M K, Sarmiento T et al. . Electrically driven subwavelength optical nanocircuits[J]. Nature Photonics, 8, 244-249(2014). http://www.nature.com/nphoton/journal/v8/n3/abs/nphoton.2014.2.html

    [79] Parzefall M, Bharadwaj P, Jain A et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions[J]. Nature Nanotechnology, 10, 1058-1063(2015). http://europepmc.org/abstract/MED/26367108

    [80] Vardi Y, Cohen-Hoshen E, Shalem G et al. Fano resonance in an electrically driven plasmonic device[J]. Nano Letters, 16, 748-752(2016). http://europepmc.org/abstract/MED/26717292

    [81] Cazier N, Buret M, Uskov A V et al. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna[J]. Optics Express, 24, 3873-3884(2016). http://europepmc.org/abstract/MED/26907040

    [82] Le Moal E, Marguet S, Rogez B et al. An electrically excited nanoscale light source with active angular control of the emitted light[J]. Nano Letters, 13, 4198-4205(2013). http://pubs.acs.org/doi/abs/10.1021/nl401874m

    [83] Uehara Y, Kimura Y, Ushioda S et al. Theory of visible light emission from scanning tunneling microscope[J]. Japanese Journal of Applied Physics, 31, 2465-2469(1992). http://adsabs.harvard.edu/abs/1992JaJAP..31.2465U

    [84] King N S, Li Y, Ayalaorozco C et al. Angle- and spectral-dependent light scattering from plasmonic nanocups[J]. Acs Nano, 5, 7254-7262(2011). http://europepmc.org/abstract/MED/21761840

    [85] Knight M W, Wu Y, Lassiter J B et al. Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle[J]. Nano Letters, 9, 2188-2192(2009). http://www.ncbi.nlm.nih.gov/pubmed/19361166/

    [86] Chen X, Yang Y, Chen Y H et al. Probing plasmonic gap resonances between gold nanorods and a metallic surface[J]. The Journal of Physical Chemistry C, 119, 18627-18634(2015). http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b06006

    [87] Akselrod G M, Argyropoulos C, Hoang T B et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 8, 835-840(2014). http://www.nature.com/nphoton/journal/v8/n11/nphoton.2014.228/metrics

    [88] Lassiter J B. McGuire F, Mock J J, et al. Plasmonic waveguide modes of film-coupled metallic nanocubes[J]. Nano Letters, 13, 5866-5872(2013).

    [89] Hooshmand N, Bordley J A. El-Sayed M A. Are hot spots between two plasmonic nanocubes of silver or gold formed between adjacent corners or adjacent facets? A DDA examination[J]. The Journal of Physical Chemistry Letters, 5, 2229-2234(2014). http://pubs.acs.org/doi/abs/10.1021/jz500673p

    [90] Kosako T, Kadoya Y, Hofmann H F. Directional control of light by a nano-optical Yagi-Uda antenna[J]. Nature Photonics, 4, 312-315(2010). http://www.nature.com/nphoton/journal/v4/n5/abs/nphoton.2010.34.html

    [91] Fang Z, Fan L, Lin C et al. Plasmonic coupling of bow tie antennas with Ag nanowire[J]. Nano Letters, 11, 1676-1680(2011). http://www.ncbi.nlm.nih.gov/pubmed/21344917

    [92] Fang Z, Peng Q, Song W et al. Plasmonic focusing in symmetry broken nanocorrals[J]. Nano Letters, 11, 893-897(2011). http://pubs.acs.org/doi/pdf/10.1021/nl104333n

    [93] Curto A G, Taminiau T H, Volpe G et al. Multipolar radiation of quantum emitters with nanowire optical antennas[J]. Nature Communications, 4, 1750(2013). http://www.nature.com/doifinder/10.1038/ncomms2769

    [94] Taminiau T H. Stefani F D, van Hulst N F. Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes[J]. Nano Letters, 11, 1020-1024(2011). http://europepmc.org/abstract/med/21322590

    [95] Saito H, Yamamoto N. Control of light emission by a plasmonic crystal cavity[J]. Nano Letters, 15, 5764-5769(2015). http://europepmc.org/abstract/MED/26301432

    [96] Watanabe H, Honda M, Yamamoto N. Size dependence of band-gaps in a one-dimensional plasmonic crystal[J]. Optics Express, 22, 5155-5165(2014). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-5-5155

    [97] Chu Y, Schonbrun E, Yang T et al. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays[J]. Applied Physics Letters, 93, 181108(2008). http://scitation.aip.org/content/aip/journal/apl/93/18/10.1063/1.3012365

    [98] Zou S, Janel N, Schatz G C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes[J]. The Journal of Chemical Physics, 120, 10871-10875(2004). http://europepmc.org/abstract/MED/15268116

    [99] Kravets V G, Schedin F, Grigorenko A N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles[J]. Physical Review Letters, 101, 087403(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000018000010000051000001&idtype=cvips&gifs=Yes

    [100] Ding P, Cai G, Wang J et al. Low-threshold resonance amplification of out-of-plane lattice plasmons in active plasmonic nanoparticle arrays[J]. Journal of Optics, 16, 065003(2014). http://www.ingentaconnect.com/content/iop/jopt2/2014/00000016/00000006/art065003

    [101] Zhou W, Dridi M, Suh J Y et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 8, 506-511(2013). http://www.ncbi.nlm.nih.gov/pubmed/23770807/

    [102] Bravo-Abad J. Garcia-Vidal F J. Plasmonic lasers: a sense of direction[J]. Nature Nanotechnology, 8, 479-480(2013).

    [103] Vecchi G, Giannini V, Gómez R J. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas[J]. Physical Review Letters, 102, 146807(2009). http://www.ncbi.nlm.nih.gov/pubmed/19392471

    [104] Canneson D, Le Moal E, Cao S et al. Surface plasmon polariton beams from an electrically excited plasmonic crystal[J]. Optics Express, 24, 26186-26200(2016). http://www.ncbi.nlm.nih.gov/pubmed/27857355

    [105] Törmä P, Barnes W L. Strong coupling between surface plasmon polaritons and emitters: a review[J]. Reports on Progress in Physics, 78, 013901(2014). http://www.ncbi.nlm.nih.gov/pubmed/25536670

    [106] Fedotov V A, Rose M, Prosvirnin S L et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 99, 147401(2007). http://www.ncbi.nlm.nih.gov/pubmed/17930720

    [107] Zheludev N I, Prosvirnin S L, Papasimakis N et al. Lasing spaser[J]. Nature Photonics, 2, 351-354(2008).

    [108] Roelandt S. Meuret Y, de Boer D K G, et al. Incoupling and outcoupling of light from a luminescent rod using a compound parabolic concentrator[J]. Optical Engineering, 54, 055101(2015).

    [109] Yang X, Wang J, Lim X H et al. Unidirectional generation of surface plasmon polaritons by a single right-angled trapezoid metallic nanoslit[J]. Journal of Physics D: Applied Physics, 50, 045101(2017). http://adsabs.harvard.edu/abs/2017JPhD...50d5101Y

    [110] Na D Y, Kim J H, Park Y B et al. Directional emission from a slit surrounded by rectangular grooves on the exit surface in a conducting plane[J]. Electromagnetics, 33, 271-280(2013). http://www.tandfonline.com/doi/full/10.1080/02726343.2013.777317

    [111] Verschuuren M A, Guo K et al. . Directional sideward emission from luminescent plasmonic nanostructures[J]. Optics Express, 24, A388-A396(2016). http://www.ncbi.nlm.nih.gov/pubmed/26832590

    [112] Lozano G, Grzela G, Verschuuren M A et al. Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices[J]. Nanoscale, 6, 9223-9229(2014). http://europepmc.org/abstract/med/24981706

    [113] Jones H, Chako N. The theory of brillouin zones and electronic states in crystals[M]. Amsterdam: North-Holland Pub Co, 3541-3542(1960).

    [114] Rodriguez S R K, Chen Y T, Steinbusch T P et al. . From weak to strong coupling of localized surface plasmons to guided modes in a luminescent slab[J]. Physical Review B, 90, 235406(2014). http://arxiv.org/abs/1408.6568

    [115] Rodriguez S R K, Abass A, Maes B et al. . Coupling bright and dark plasmonic lattice resonances[J]. Physical Review X, 1, 021019(2011). http://www.oalib.com/paper/3382450

    [116] Fang X, Li Z, Long Y et al. Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling[J]. Physical Review Letters, 99, 066805(2007). http://www.ncbi.nlm.nih.gov/pubmed/17930854

    [117] van Beijnum F, van Veldhoven P J, Geluk E J et al. . Surface plasmon lasing observed in metal hole arrays[J]. Physical Review Letters, 110, 206802(2013). http://www.ncbi.nlm.nih.gov/pubmed/25167437

    [118] Meng X, Liu J, Kildishev A et al. Highly-directional plasmonic lasing in the visible with subwavelength hole arrays[C]. CLEO: QELS_Fundamental Science. Optical Society of America, FTh3K, 3(2014).

    [119] Stein B, Laluet J Y, Devaux E et al. Surface plasmon mode steering and negative refraction[J]. Physical Review Letters, 105, 266804(2010). http://europepmc.org/abstract/MED/21231700

    [120] Stein B, Devaux E, Genet C et al. Self-collimation of surface plasmon beams[J]. Optics letters, 37, 1916-1918(2012). http://www.opticsinfobase.org/abstract.cfm?URI=ol-37-11-1916

    [121] Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: from beam modulation to near-field holography[J]. Laser & Optoelectronics Progress, 54, 050002(2017).

    [122] Schokker A H, Koenderink A F. Lasing at the band edges of plasmonic lattices[J]. Physical Review B, 90, 155452(2014). http://www.oalib.com/paper/3586654

    Jiaqi Chen, Guoqiu Yuan, Meng Wang, Min Cao. Advances in Directional Control of Surface Plasmon Amplification by Stimulated Emission of Radiation[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030007
    Download Citation