• Acta Optica Sinica
  • Vol. 45, Issue 8, 0830001 (2025)
Han Zhang1, Feng Zhu2,*, Hailiang Shi2, Jingjing Zhang3..., Xiang Cao1, Xianhua Wang2, Hanhan Ye2 and Yunfei Han2|Show fewer author(s)
Author Affiliations
  • 1School of Artificial Intelligence, Anhui University, Hefei 230601, Anhui, China
  • 2Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 3School of Electrical Engineering and Automation, Anhui University, Hefei 230601, Anhui, China
  • show less
    DOI: 10.3788/AOS241704 Cite this Article Set citation alerts
    Han Zhang, Feng Zhu, Hailiang Shi, Jingjing Zhang, Xiang Cao, Xianhua Wang, Hanhan Ye, Yunfei Han. Phase Correction Algorithm for Spaceborne Infrared Fourier Transform Spectrometer Based on Minimum Spectral Imaginary Part[J]. Acta Optica Sinica, 2025, 45(8): 0830001 Copy Citation Text show less
    Fourier transform spectrometer scanning working mode
    Fig. 1. Fourier transform spectrometer scanning working mode
    Interference schematic of Michelson interferometer
    Fig. 2. Interference schematic of Michelson interferometer
    Schematic diagram of linear calibration principle of two points on a star
    Fig. 3. Schematic diagram of linear calibration principle of two points on a star
    Schematic diagram of simplex algorithm
    Fig. 4. Schematic diagram of simplex algorithm
    Phase correction flowchart
    Fig. 5. Phase correction flowchart
    Adaptation value calculation results. (a) Vary with iteration times; (b) vary with offset
    Fig. 6. Adaptation value calculation results. (a) Vary with iteration times; (b) vary with offset
    ICT, ES, and DS spectra and phase distributions in LW band. (a) Spectra; (b) phase distributions
    Fig. 7. ICT, ES, and DS spectra and phase distributions in LW band. (a) Spectra; (b) phase distributions
    ICT preprocessing. (a) Phase of 30 scan lines; (b) corresponding to offset interferogram; (c) correlation coefficient matrix
    Fig. 8. ICT preprocessing. (a) Phase of 30 scan lines; (b) corresponding to offset interferogram; (c) correlation coefficient matrix
    Phase comparisons before and after DS scene correction. (a) Correction phase; (b) comparison of phase difference with ICT
    Fig. 9. Phase comparisons before and after DS scene correction. (a) Correction phase; (b) comparison of phase difference with ICT
    Comparisons of calibration data of different methods in ES scene. (a) Phase difference with ICT; (b) spectral imaginary part
    Fig. 10. Comparisons of calibration data of different methods in ES scene. (a) Phase difference with ICT; (b) spectral imaginary part
    Comparisons of NEdN of the real part spectra of DS and the imaginary part spectra of ES before and after correction. (a) MW; (b) SW
    Fig. 11. Comparisons of NEdN of the real part spectra of DS and the imaginary part spectra of ES before and after correction. (a) MW; (b) SW
    ParameterSpecification
    Scan period10 s
    View angle1.1°
    Scan angle±50.4°
    Radiometric calibration accuracy1 K, expected 0.7 K
    Spectral calibration accuracy1×10-5, expected 7×10-6
    Spectral resolution0.625 cm-1
    Spectral range

    LW: 650‒1135 cm-1

    MW: 1210‒1750 cm-1

    SW: 2155‒2550 cm-1

    Table 1. Instrument parameter characteristics of HIRAS
    Band

    Missing

    site

    MertzFCEIPAMSI-SM
    Offset

    Q /(mW·m-2·

    sr-1·cm)

    Offset

    Q /(mW·m-2·

    sr-1·cm)

    Offset

    Q /(mW·m-2·

    sr-1·cm)

    Offset

    Q /(mW·m-2·

    sr-1·cm)

    LW2000121.3011.97985.4542.04523.8372.04483.836
    9600115.0931.7411109.4272.031118.4892.029418.472
    14000102.6310.022849.6800.04579.0490.04559.041
    102.631-0.049011.348-0.02302.837-0.02332.831
    Table 2. Comparisons of methods in LW band
    Band

    Missing

    site

    MertzFCEIPAMSI-SM
    Offset

    Q /(mW·m-2·

    sr-1·cm)

    Offset

    Q /(mW·m-2·

    sr-1·cm)

    Offset

    Q /(mW·m-2·

    sr-1·cm)

    Offset

    Q /(mW·m-2·

    sr-1·cm)

    MW73.4930.09261127.0000.006965.6840.007464.881
    SW115.0930.6351182.9370.013511.4810.00209.007
    Table 3. Comparisons of methods in MW and SW band
    DateMethodFOV 1FOV 2FOV 3FOV 4Average NEdN
    20190301IPA150.142106.576129.439155.570135.432
    MSI-SM150.115106.599129.397155.302135.353
    20190303IPA91.382132.293150.89295.674117.560
    MSI-SM91.270131.691150.66895.579117.302
    20190305IPA239.985121.502145.452159.976166.729
    MSI-SM240.141121.385145.381159.652166.640
    20190307IPA99.293199.765266.605104.894167.639
    MSI-SM98.882198.765265.409103.856166.728
    Table 4. Comparisons of calibration accuracy in LW band
    DateMethodFOV 1FOV 2FOV 3FOV 4Average NEdN
    20190301IPA23.92337.93246.50123.79733.038
    MSI-SM23.90836.67646.29523.68332.641
    20190303IPA21.30576.78163.57318.36945.007
    MSI-SM20.61567.23757.79218.80841.113
    20190305IPA39.34358.28064.94634.88249.363
    MSI-SM36.23451.06158.36632.29244.488
    20190307IPA24.31044.50048.58821.19434.648
    MSI-SM23.29739.57944.86920.61432.090
    Table 5. Comparisons of calibration accuracy in MW band
    DateMethodFOV 1FOV 2FOV 3FOV 4Average NEdN
    20190301IPA6.7636.7179.4716.2447.299
    MSI-SM5.6495.7014.6324.4745.114
    20190303IPA6.0786.4017.9374.8566.318
    MSI-SM5.8065.7654.5144.3525.109
    20190305IPA6.3326.1177.4854.5176.113
    MSI-SM6.1795.9265.0074.3595.368
    20190307IPA6.5626.95610.6585.3927.392
    MSI-SM5.9145.9174.5334.5215.221
    Table 6. Comparisons of calibration accuracy in SW band
    BandMertzFCEIPAMSI-SM
    LW37.2361.23016.6693.677
    MW31.3211.04420.6522.448
    SW14.2680.56820.8642.494
    Table 7. Comparisons of registration time for different methods
    Han Zhang, Feng Zhu, Hailiang Shi, Jingjing Zhang, Xiang Cao, Xianhua Wang, Hanhan Ye, Yunfei Han. Phase Correction Algorithm for Spaceborne Infrared Fourier Transform Spectrometer Based on Minimum Spectral Imaginary Part[J]. Acta Optica Sinica, 2025, 45(8): 0830001
    Download Citation