• Laser & Optoelectronics Progress
  • Vol. 56, Issue 12, 122201 (2019)
Dongting Hu1、2, Wen Shen1、2, Wenchao Ma1、2, Xinyu Liu1、2, Zhouping Su1、2, Huaxin Zhu1、2, Xiumei Zhang1、2, Lizhi Que1、2, Zhuowei Zhu1、2, Yixin Zhang1、2, Guoqing Chen1、2, and Lifa Hu1、2、*
Author Affiliations
  • 1 School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • 2 Jiangsu Provincial Research Center of Light Industrial Opto-Electronic Engineering and Technology, Wuxi, Jiangsu 214122, China
  • show less
    DOI: 10.3788/LOP56.122201 Cite this Article Set citation alerts
    Dongting Hu, Wen Shen, Wenchao Ma, Xinyu Liu, Zhouping Su, Huaxin Zhu, Xiumei Zhang, Lizhi Que, Zhuowei Zhu, Yixin Zhang, Guoqing Chen, Lifa Hu. Fast Convergence Stochastic Parallel Gradient Descent Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(12): 122201 Copy Citation Text show less
    Block diagram of adaptive optics system without wavefront detection
    Fig. 1. Block diagram of adaptive optics system without wavefront detection
    Actuator distribution of 69-actuator deformable mirror
    Fig. 2. Actuator distribution of 69-actuator deformable mirror
    Flow chart of SPGD algorithm
    Fig. 3. Flow chart of SPGD algorithm
    Convergence for single random test and averaging after multiple tests under 800 iterations
    Fig. 4. Convergence for single random test and averaging after multiple tests under 800 iterations
    Effects of perturbation amplitude δ and gain coefficient γ on residual wavefront and its optimal fitting curve
    Fig. 5. Effects of perturbation amplitude δ and gain coefficient γ on residual wavefront and its optimal fitting curve
    Optimal solution for wavefronts with different initial distortions. (a) Wavefronts with three initial distortion magnitudes; (b) distribution of optimal curve for wavefronts with different initial distortions
    Fig. 6. Optimal solution for wavefronts with different initial distortions. (a) Wavefronts with three initial distortion magnitudes; (b) distribution of optimal curve for wavefronts with different initial distortions
    Convergence under different parameter combinations for wavefronts with different initial distortions. (a) 0.3312 rad;(b)0.8448 rad;(c)1.3180 rad
    Fig. 7. Convergence under different parameter combinations for wavefronts with different initial distortions. (a) 0.3312 rad;(b)0.8448 rad;(c)1.3180 rad
    AlgorithmSPGDSA
    Disturbanceamplitude δ111N/A
    Gaincoefficient γ-0.7-1-1.3N/A
    Wavefront RMS after800 iterations J800 /rad0.02580.02990.03610.0720
    Convergenceefficiency η /%92.2190.9789.1078.26
    Table 1. Convergence under different parameter combinations for wavefront with initial distortion RMS of 0.3312 rad
    AlgorithmSPGDSA
    disturbanceamplitude δ111N/A
    gaincoefficient γ-0.7-1-1.3N/A
    Wavefront RMS after800 iterations J800 /rad0.07080.06450.07360.1338
    Convergenceefficiency η /%91.6292.3791.2984.16
    Table 2. Convergence of different parameter combinations for wavefront with initial distortion RMS of 0.8448 rad
    AlgorithmSPGDSA
    Disturbanceamplitude δ111N/A
    Gaincoefficient γ-0.7-1-1.3N/A
    Wavefront RMS after800 iterations J800 /rad0.10980.08950.08770.1718
    Convergenceefficiency η /%91.6593.1793.3286.97
    Table 3. Convergence of different parameter combinations for wavefront with initial distortion RMS of 1.3180 rad
    Dongting Hu, Wen Shen, Wenchao Ma, Xinyu Liu, Zhouping Su, Huaxin Zhu, Xiumei Zhang, Lizhi Que, Zhuowei Zhu, Yixin Zhang, Guoqing Chen, Lifa Hu. Fast Convergence Stochastic Parallel Gradient Descent Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(12): 122201
    Download Citation