• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 6, 1850035 (2018)
Ibrahim Akkaya1、*, Erman Selim2, Mert Altintas2, and Mehmet Engin2
Author Affiliations
  • 1Izmir Biomedicine and Genome Center (iBG), Balcova, Izmir 35340, Turkey
  • 2Electrical Electronics Engineering Department, Ege University, Bornova, Izmir 35040, Turkey
  • show less
    DOI: 10.1142/s1793545818500359 Cite this Article
    Ibrahim Akkaya, Erman Selim, Mert Altintas, Mehmet Engin. Power spectral density-based nearinfrared sub-band detection for noninvasive blood glucose prediction in both in-vitro and in-vivo studies[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1850035 Copy Citation Text show less
    References

    [1] World Health Organization (WHO), Global Report on Diabetes, ISBN 9789241565257 (2016). Google Scholar

    [2] C. F. So, K. S. Choi, T. K. S. Wong, J. W. Y. Chung, “Recent advances in noninvasive glucose monitoring,” Med. Dev. Evid. Res. 5, 45–52 (2012). Google Scholar

    [3] N. A. Bazaev, S. V. Selishchev, “Noninvasive methods for blood glucose measurement,” Biomed. Eng. 41 (1), 42–50 (2007).

    [4] Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, D. D. Arnone, “The use of Fourier-transform infreared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48, 2023–2032 (2003).

    [5] L. Brancaleon, M. P. Bamberg, T. Sakamaki, N. Kollias, “Attenuated total reflection Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo,” J. Invest. Dermatol. 116 (3), 380–386 (2001).

    [6] L. Zhu, J. Lin, L. Baiqing, H. Li, “Noninvasive blood glucose measurement by ultrasound modulated optical technique,” Chin. Opt. Lett. 11 (2), 021701 (2013).

    [7] O. Amir, D. Weinstein, S. Zilberman, M. Less, D. Perl-Treves, H. Primack, A. Weinstein, E. Gabis, B. Fikhte, A. Karasik, “Continuous Noninvasive Glucose Monitoring Technology Based on Occlusion Spectroscopy,” J. Diabetes Sci. Tech. 1 (4), 463–469 (2007).

    [8] K. J. Jeon, I. D. Hwang, S. Hahn, G. Yoon, “Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy,” J. Biomed. Opt. 11 (1), 014022 (2006).

    [9] N. Ozana, N. Arbel, Y. Beiderman, V. Mico, M. Sanz, J. Garcia, A. Anand, B. Javidi, Y. Epstein, Z. Zalevsky, “Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level,” Biomed. Opt. Exp. 5 (6), 1926–1940 (2014).

    [10] K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography a pilot study in human subjects,” Diabetes Care 25 (12), 2263–2267 (2002).

    [11] V. T. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues ch. 18, CRC Press, Florida (2009). Google Scholar

    [12] N. A. Bazaev, S. V. Selishchev, “Noninvasive methods for blood glucose measurement,” Biomed. Eng., 41 (1), 42–50 (2007).

    [13] Z. Zhao, R. A. Myllyla, “Photoacoustic blood glucose and skin measurement based on optical scattering effect,” Proc. SPIE 4707, Saratov Fall Meeting, Optical Technologies in Biophysics and Medicine III (2002), https://doi.org/10.1117/12.475582. Google Scholar

    [14] K. Yamakoshi, Y. Yamakoshi, “Pulse glucometry: A new approach for noninvasive blood glucose measurement using instantenous differantial near infrared spectrophotometry,” J. Biomed. Opt. 11 (5), 1–11 (2006).

    [15] M. Ogawa, Y. Yamakoshi, S. Makoto, N. Masamichi, T. Yamakoshi, S. Tanaka, P. Rolfe, T. Tamura, K. Yamakoshi, “Support vector machines as multivariate calibration model for prediction of blood glucose concentration using a new non-invasive optical method named pulse glucometry,” 29th Annual Int. Conf. of the IEEE EMBS, Lyon, France, 2007, pp. 4561–4563. Google Scholar

    [16] H. J. Van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, “Light scattering in intralipid 10% in the wavelength range of 400–1000 nm Pulse glucometry: A new approach for noninvasive blood glucose measurement using instantenous differantial near infrared spectrophotometry,” Appl. Opt. 30 (31), 4507–4514 (1991). Crossref, ISI, Google Scholar

    [17] S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, J. C. van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies,” Lasers in Surgery and Med. 12, 510–519 (1992). Crossref, ISI, Google Scholar

    [18] I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1997–1930 (1989).

    [19] P. Di Ninni, F. Martelli, G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Exp. 18 (26), 26854–26865 (2010).

    [20] P. Di Ninni, F. Martelli, G. Zaccanti, “Intralipid: Towards a diffusive reference standard for optical tissue phantoms,” OPhys. Med. Biology 56 (2), 21–28 (2010).

    [21] J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. S. Christiansen, H. Orskov, M. Essenpreis, G. S. Redeker, D. Bcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22 (3), 190–192 (1997).

    [22] A. K. Amerov, J. Chen, G. W. Small, M. A. Arnold, “Scattering and absorption effects in the determination of glucose in whole blood by near infrared spectroscopy,” Anal. Chem. 77 (14), 4587–4594 (2005).

    [23] M. Elgendi, “On the analysis of fingertip photoplethysmogram signals,” Current Card. Reviews, 8, 14–25 (2012).

    [24] Y. Sun, N. Thakor, “Photoplethysmography revisited: From contact to noncontact, from point to imaging,” IEEE Trans. On Biomed. Eng. 63 (3), 463–477 (2016).

    [25] A. R. Kavsaolu, K. Polat, M. R. Bozkurt, “An innovative peak detection algorithm for photoplethysmography signals: An adaptive segmentation method”, Turkish J. EE and Comp. Sci. 24, 1782–1796 (2016).

    [26] H. Wenqin, L. Xiaoxia, M. Wang, L. Gang, L. Lin, “Spectral quality assessment based on variability analysis: Application to noninvasive hemoglobin measurement by dynamic spectrum,” Anayl. Meth. 7, 5565–5573 (2015).

    [27] L. Gang, Y. Wang, L. Lin, Y. Liu, X. Li, S. C. Y. Lu, “Dynamic spectrum: A brand new non-invasive blood component measure method,” Eng. In Med. And Biol. 27th Annual Conf. China (2005). Google Scholar

    [28] Y. Peng, L. Gang., M. Zhou, H. Wang, L. Lin, “Dynamic spectrum extraction method based on independent component analysis combined dual-tree complex wavelet transform,” Royal Soc. of Chem. 7, 11198–11205 (2017). Google Scholar

    [29] Y. Yamakoshi, K. Matsumura, T. Yamakoshi, J. Lee, P. Rolfe, Y. Kato, K. Shimizu, K. Yamakoshi, “Side-scattered finger photoplethsmograpyh: Experimental investigations toward practical noninvasive measurement of blood glucose,” J. Biomed. Opt. 22 (6), 067001 (2017).

    Ibrahim Akkaya, Erman Selim, Mert Altintas, Mehmet Engin. Power spectral density-based nearinfrared sub-band detection for noninvasive blood glucose prediction in both in-vitro and in-vivo studies[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1850035
    Download Citation