• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 70701 (2018)
Yuan Muye1, Liu Bo1, Wang Tianliang1、2、*, and Xu Zhikang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.070701 Cite this Article Set citation alerts
    Yuan Muye, Liu Bo, Wang Tianliang, Xu Zhikang. Sawtooth Waveform Generation Based on Two Parallel Mach-Zehnder Modulators[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70701 Copy Citation Text show less
    References

    [1] Capmany J, Novak D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.

    [2] Du J B, Li D J, Ma M, et al. Vibration estimation and imaging of synthetic aperture laser radar based on interference processing[J]. Chinese Journal of Lasers, 2016, 43(9): 0910003.

    [3] Feng Y, Jiang H W, Zhang L, et al. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005.

    [4] Tao S X, Deng X Y, Li J Z, et al. Real-time measurement of light beat-frequency signal with bandwidth of 56.978 GHz[J]. Acta Optica Sinica, 2017, 37(3): 0306004.

    [5] Zhou D P, Dong Y. Anti-interference of current sensing fiber in all-fiber current sensors[J]. Acta Optica Sinica, 2017, 37(10): 1006002.

    [6] Urick V J, Williams K J, McKinney J D. Fundamentals of microwave photonics[M]. Hoboken: John Wiley & Sons, 2015.

    [7] Lezekiel S. Microwave photonics: devices and applications[M]. Hoboken: John Wiley & Sons, 2009.

    [8] Chou J, Han Y, Jalali B. Adaptive RF-photonic arbitrary waveform generator[J]. IEEE Photonics Technology Letters, 2003, 15(4): 581-583.

    [9] Jalali B, Kelkar P, Saxena V. Photonic arbitrary waveform generator[J]. Proceeding of IEEE, 2001: 7268077.

    [10] Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Proceeding of IEEE, 2010: 11428470.

    [11] Jiang Z, Huang C B, Leaird D E, et al. Optical arbitrary waveform processing of more than 100 spectral comb lines[J]. Nature Photonics, 2007, 1(8): 463-467.

    [12] Yao J P. Photonic generation of microwave arbitrary waveforms[J]. Optics Communications, 2011, 284(15): 3723-3736.

    [13] McKinney J D, Leaird D E, Weiner A M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper[J]. Optics Letters, 2002, 27(15): 1345-1347.

    [14] Yilmaz T, DePriest C M, Turpin T, et al. Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser[J]. IEEE Photonics Technology Letters, 2002, 14(11): 1608-1610.

    [15] Lin I S, McKinney J D, Weiner A M. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication[J]. IEEE Microwave and Wireless Components Letters, 2005, 15(4): 226-228.

    [16] Jiang Z, Leaird D E, Weiner A M. Line-by-line pulse shaping control for optical arbitrary waveform generation[J]. Optics Express, 2005, 13(25): 10431-10439.

    [17] Zhang F Z, Gao B D, Zhou P, et al. Triangular pulse generation by polarization multiplexed optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2016, 28(15): 1645-1648.

    [18] Xiang P, Guo H, Chen D L, et al. A novel approach to photonic generation of periodic triangular radio frequency waveforms[J]. Optica Applicata, 2015, 45(3): 381-391.

    [19] Zhang C X, Zhang X Q, Hu S L. Development ofapplication research on fiber delay lines[J]. Chinese Journal of Lasers, 2009, 36(9): 2234-2244.

    [20] Liu W L, Yao J P. Photonic generation of microwave waveforms based on a polarization modulator in a Sagnac loop[J]. Journal of Lightwave Technology, 2014, 32(20): 3637-3644.

    [21] Jia D G, Guo Q, Ma C B, et al. Tunable dispersion compensation on optical fiber communication system[J]. Laser and Infrared, 2011, 41(1): 15-22.

    [22] Zhang X, Yang Z, Li Q L, et al. Research on temperature tuning properties of chirped fiber grating[J]. Acta Optica Sinica, 2016, 36(5): 0505002.

    [23] Wu Z L. The research of high dynamic range microwave photonic link and all-optical frequency down-conversion technology[D]. Beijing: Beijing University of Posts and Telecommunications, 2012.

    [24] Chen Y, Wen A, Guo J, et al. A novel optical mm-wave generation scheme based on three parallel Mach-Zehnder modulators[J]. Optics Communications, 2011, 284(5): 1159-1169.

    [25] Feng Z H, Fu S N, Tang M, et al. Investigation on agile bias control technique for arbitrary-point locking inLithium Niobate Mach-Zehnder modulators[J]. Acta Optica Sinica, 2012, 32(12): 1206002.

    Yuan Muye, Liu Bo, Wang Tianliang, Xu Zhikang. Sawtooth Waveform Generation Based on Two Parallel Mach-Zehnder Modulators[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70701
    Download Citation