• Journal of Advanced Dielectrics
  • Vol. 11, Issue 6, 2150029 (2021)
C. L. Wang*
Author Affiliations
  • School of Physics, Shandong University, Jinan, Shandong 250100, P. R. China
  • show less
    DOI: 10.1142/S2010135X21500296 Cite this Article
    C. L. Wang. Photocatalytic degradations of JWS-type kinetics[J]. Journal of Advanced Dielectrics, 2021, 11(6): 2150029 Copy Citation Text show less
    References

    [1] WangC. L.,Fractional kinetics of photocatalytic degradation,J. Adv. Dielectr.08,1850034(2018).

    [2] WangC. L.,Photocatalytic degradation as Davidson–Cole relaxation in time domain,J. Adv. Dielectr.09,1950006(2019).

    [3] WangC. L.,Piezo-catalytic degradation of Havriliak–Negami type,J. Adv. Dielectr.09,1950021(2019).

    [4] UchaikinV. andSibatovR.,Fractional Kinetics in Solids(World Scientific,Singapore,2013).

    [5] StanislavskyA.,WeronK. andTrzmielJ.,Subordination model of anomalous diffusion leading to the two-power-law relaxation responses,Europhys. Lett.91,40003(2010)

    [6] JurlewiczA.,TrzmielJ. andWeronK.,Two-power-law relaxation processes in complex materials,Acta Phys. Pol. B41,1001(2010).

    [7] TrzmielJ.,JurlewiczA. andWeronK.,The frequency-domain relaxation response of gallium doped Cd1−xMnxTe,J. Phys., Condens. Matter22,095802(2010).

    [8] TrzmielJ.,MarciniszynT. andKomarJ.,Generalized Mittag-Leffler relaxation of NH4H2PO4: Porous glass composite,J. Non-Cryst. Solids357,1791(2011).

    [9] GarrappaR.,MainardiF. andMaioneG.,Models of dielectric relaxation based on completely monotone functions,Fract. Calc. Appl. Anal.19,1105(2016).

    [10] GorenfloR.,KilbasA. A.,MainardiF. andRogosinS. V.,Mittag-Leffler Functions, Related Topics and Applications,2nd edn.(Springer-Verlag,Berlin,2020).

    [11] GarraR. andGarrappaR.,The Prabhakar or three parameter Mittag-Leffler function: Theory and application,Commun. Nonlinear Sci. Numer. Simul.56,314(2018).

    [12] GiustiA.,ColombaroI.,GarraR.,GarrappaR.,PolitoF.,PopolizioM. andMainardiF.,A practical guide to Prabhakar fractional calculus,Fract. Calc. Appl. Anal.23,9(2020).

    [13] LiX. W.,WangB.,YinW. X.,DiJ.,XiaJ. X.,ZhuW. S. andLiH. M.,Cu2+ modified g-C3N4 photocatalysts for visible light photocatalytic properties,Acta Phys.-Chim. Sin.36,1902001(2020).

    [14] LiX. B.,LiuJ. Y.,HuangJ. T.,HeC. Z.,FengZ. J.,ChenZ.,WanL. Y. andDengF.,All organic S-scheme heterojunction PDI-Ala–S–C3N4 photo-catalyst with enhanced photocatalytic performance,Acta Phys.-Chim. Sin.37,2010030(2021).

    [15] MonfortO. andPleschG.,Bismuth vanadate-based semiconductor photo-catalysts: A short critical review on the efficiency and the mechanism of photo-degradation of organic pollutants,Environ. Sci. Pollut. Res.25,19362(2018).

    [16] OhW. D.,DongZ. L. andLimT. T.,Hierarchically-structured Co-CuBi2O4 and Cu-CuBi2O4 for sulfanilamide removal via peroxymonosulfate activation,Catal. Today280,2(2017).

    [17] WangC. L.,Jonscher indices for dielectric materials,J. Adv. Dielectr.09,1950046(2019).

    [20] StanislavskyA. andWeronK.,Stochastic tools hidden behind the empirical dielectric relaxation laws,Rep. Prog. Phys.80,036001(2017).

    C. L. Wang. Photocatalytic degradations of JWS-type kinetics[J]. Journal of Advanced Dielectrics, 2021, 11(6): 2150029
    Download Citation