• Laser & Optoelectronics Progress
  • Vol. 53, Issue 7, 71404 (2016)
Liu Lu1、2、*, Huang Zongnan2, Ruan Liang1, Tao Jun1, and Zhang Wenwu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.071404 Cite this Article Set citation alerts
    Liu Lu, Huang Zongnan, Ruan Liang, Tao Jun, Zhang Wenwu. Ablation Study of Stainless Steel by Picosecond Laser with High Repetition Rate[J]. Laser & Optoelectronics Progress, 2016, 53(7): 71404 Copy Citation Text show less
    References

    [1] Sezer H K, Li L, Schmidt M, et al.. Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys[J]. International Journal of Machine Tool & Manufacture, 2006, 46(15): 1972-1982.

    [2] Leigh S, Sezer K, Li L, et al.. Recast and oxide formation in laser-drilled acute holes in CMSX-4 nickel single-crystal superalloy[J]. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 2010, 224(B7): 1005-1016.

    [3] Yang Qing, Du Guangqing, Chen Feng, et al.. Ultrafast thermal relaxation characteristics in gold film excited by shaped femtosecond laser pulses[J]. Chinese J Lasers, 2014, 41(5): 0502005.

    [4] Xing Songling, Liu Lei, Zou Guisheng, et al.. Effects of femtosecond lasers parameters on hole drilling of silica glass[J]. Chinese J Lasers, 2015, 42(4): 0403001.

    [5] Weck A, Crawford T H R, Wilkinson D S, et al.. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses[J]. Applied Physics A, 2008, 90(3): 537-543.

    [6] Liu Lu, Ruan Liang, Zhang Tianrun, et al.. Experimental study on stainless steel micro-hole drilling with picosecond laser[J]. Applied Laser, 2015, 35(4): 472-478.

    [7] Lü Xiaozhan, Ji Lingfei, Wu Yan, et al.. Fabrication of high performance anti-reflection silicon surface by picosecond laser scanning irradiation with chemical corrosion[J]. Chinese J Lasers, 2015, 42(4): 0403006.

    [8] Ji Lingfei, Ling Chen, Li Qiurui, et al.. Research process and development of industrial application of picosecond laser processing[J]. Journal of Mechanical Engineering, 2014, 50(5): 115-126.

    [9] Di Niso F, Gaudiuso C, Sibillano T, et al.. Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates[J]. Optics Express, 2014, 22(10): 12200-12210.

    [10] Ancona A, Roser F, Rademaker K, et al.. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system[J]. Optics Express, 2008, 16(12): 8958-8968.

    [11] Chichkov B N, Momma C, Nolte S, et al.. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.

    [12] Lopez J, Torres R, Zaouter Y, et al.. Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power Ytterbium doped fiber ultrafast laser[C]. SPIE, 2013(8611): 861118.

    [13] Neuenschwander B, Jaeggi B, Schmid M. From ps to fs: Dependence of the material removal rate and the surface quality on the pulse duration for metals, semiconductors and oxides[C]. ICALEO, 2012: 959-968.

    [14] Zhao W Q. Wang W J. Jiang G D, et al.. Ablation and morphological evolution of micro-holes in stainless steel with picosecond laser pulses[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(9-12): 1713-1720.

    [15] Schille J, Schneider L, Mueller M, et al.. Highspeed laser micro processing using ultrashort laser pulses[J]. Journal of Laser Micro Nanoengineering, 2014, 9(2): 161-168.

    Liu Lu, Huang Zongnan, Ruan Liang, Tao Jun, Zhang Wenwu. Ablation Study of Stainless Steel by Picosecond Laser with High Repetition Rate[J]. Laser & Optoelectronics Progress, 2016, 53(7): 71404
    Download Citation