• Photonics Research
  • Vol. 5, Issue 3, 176 (2017)
Wei Yan1、2, Yanlong Yang3, Yu Tan2, Xun Chen2, Yang Li2, Junle Qu1、5、*, and Tong Ye2、4、6、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Department of Bioengineering and the COMSET, Clemson University, Clemson, South Carolina 29634, USA
  • 3State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, China
  • 4Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
  • 5e-mail: jlqu@szu.edu.cn
  • 6e-mail: ye7@clemson.edu
  • show less
    DOI: 10.1364/PRJ.5.000176 Cite this Article Set citation alerts
    Wei Yan, Yanlong Yang, Yu Tan, Xun Chen, Yang Li, Junle Qu, Tong Ye. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples[J]. Photonics Research, 2017, 5(3): 176 Copy Citation Text show less
    References

    [1] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated-emission: stimulated emission depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [2] T. A. Klar, S. W. Hell. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett., 24, 954-956(1999).

    [3] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, H. F. Hess. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [4] M. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy. Nat. Methods, 3, 793-796(2006).

    [5] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 102, 13081-13086(2005).

    [6] G. Moneron, S. W. Hell. Two-photon excitaion STED microscopy. Opt. Express, 17, 14567-14573(2009).

    [7] N. T. Urban, K. I. Willig, S. W. Hell, U. V. Nagerl. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J., 101, 1277-1284(2011).

    [8] W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, K. Shi. Super-resolution deep imaging with hollow Bessel beam STED microscopy. Laser. Photon. Rev., 10, 147-152(2016).

    [9] M. J. Booth. Adaptive optics in microscopy. Philos. Trans. R. Soc. A, 365, 2829-2843(2007).

    [10] M. J. Booth. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl., 3, e165(2014).

    [11] M. J. Booth. Aberrations and adaptive optics in super-resolution microscopy. Microscopy, 64, 251-261(2015).

    [12] T. J. Gould, D. Burke, J. Bewersdorf, M. J. Booth. Adaptive enables 3D STED microscopy in aberrating specimens. Opt. Express, 20, 20998-21009(2012).

    [13] M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, P. M. French. 3-D stimulated emission depletion microscopy with programmable aberration correction. J. Biophoton., 7, 29-36(2014).

    [14] I. C. Hernandez, M. Castello, L. Lanzano, M. D. Amora, P. Bianchini, A. Diaspro, G. Vicidomini. Two-photon excitation STED microscopy with time-gated detection. Sci. Rep., 6, 19419(2016).

    [15] S. Deng, L. Liu, Y. Cheng, R. Li, Z. Xu. Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy. Opt. Express, 18, 1657-1666(2010).

    [16] S. Deng, L. Liu, Y. Cheng, R. Li, Z. Xu. Investigation of the influence of the aberration induced by a plane interface on STED microscopy. Opt. Express, 17, 1714-1725(2009).

    [17] R. Liu, D. E. Milkie, A. Kerlin, B. M. Lennan, N. Ji. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique. Opt. Express, 22, 1619-1628(2014).

    [18] M. Cui. Parallel wavefront optimization method for focusing light through random scattering media. Opt. Lett., 36, 870-872(2011).

    [19] W. B. Bridges, P. T. Brunner, S. P. Lazzara, T. A. Nussmeier, T. R. Omeara, J. A. Sanguinet, W. P. Brown. Coherent optical adaptive technique. Appl. Opt., 13, 291-300(1974).

    [20] N. Ji, D. E. Milkie, E. Betzig. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods, 7, 141-147(2009).

    [21] K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, N. Ji. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissues. Nat. Commun., 6, 7276(2015).

    [22] X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, J. Kubby. Adaptive optics confocal microscopy using direct wavefront sensing. Opt. Lett., 36, 1062-1064(2011).

    [23] M. A. Lauterbach, J. Keller, A. Schonle, D. Kamin, V. Westphal, S. O. Rizzoil, S. W. Hell. Comparring vedio-rate STED nanoscopy and confocal microscopy of living neurons. J. Biophoton., 3, 417-424(2010).

    CLP Journals

    [1] Jia Zhang, Soham Samanta, Jia-Lin Wang, Lu-Wei Wang, Zhi-Gang Yang, Wei Yan, Jun-Le Qu. Study on a novel probe for stimulated emission depletion Super-resolution Imaging of Mitochondria[J]. Acta Physica Sinica, 2020, 69(16): 168702-1

    [2] Zhiping Zeng, Jing Ma, Canhua Xu. Cross-cumulant enhanced radiality nanoscopy for multicolor superresolution subcellular imaging[J]. Photonics Research, 2020, 8(6): 893

    Wei Yan, Yanlong Yang, Yu Tan, Xun Chen, Yang Li, Junle Qu, Tong Ye. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples[J]. Photonics Research, 2017, 5(3): 176
    Download Citation