• Photonics Research
  • Vol. 12, Issue 4, 638 (2024)
Jiaju Wu1、†, Jingguang Chen2、†, Xin Qi1, Zhiwei Guo1, Jiajun Wang2, Feng Wu3, Yong Sun1, Yunhui Li1, Haitao Jiang1、4、*, Lei Shi2、5、*, Jian Zi2, and Hong Chen1
Author Affiliations
  • 1MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai 200433, China
  • 3School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
  • 4e-mail: jiang-haitao@tongji.edu.cn
  • 5e-mail: lshi@fudan.edu.cn
  • show less
    DOI: 10.1364/PRJ.515969 Cite this Article Set citation alerts
    Jiaju Wu, Jingguang Chen, Xin Qi, Zhiwei Guo, Jiajun Wang, Feng Wu, Yong Sun, Yunhui Li, Haitao Jiang, Lei Shi, Jian Zi, Hong Chen. Observation of accurately designed bound states in the continuum in momentum space[J]. Photonics Research, 2024, 12(4): 638 Copy Citation Text show less
    References

    [1] C. W. Hsu, B. Zhen, A. D. Stone. Bound state in the continuum. Nat. Rev. Mater., 1, 16048(2019).

    [2] J. von Neumann, E. P. Wigner. Über merkwürdige diskrete eigenwerte. Phys. Z., 30, 465(1929).

    [3] H. Friedrich, D. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231-3242(1985).

    [4] C. M. Linton, P. McIver. Embedded trapped modes in water waves and acoustics. Wave Motion, 45, 16-29(2007).

    [5] H. Krüger. On the existence of embedded eigenvalues. J. Math. Anal. Appl., 395, 776-787(2012).

    [6] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [7] W. Liu, B. Wang, Y. Zhang. Circularly polarized states spawning from bound states in the continuum. Phys. Rev Lett., 123, 116104(2019).

    [8] S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov. Quasiguided modes and optical properties of photonic crystal slabs. Phys. Rev. B, 66, 045102(2002).

    [9] A. Christ, S. G. Tikhodeev, N. A. Gippius. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys. Rev. Lett., 91, 183901(2003).

    [10] K. Koshelev, S. Lepeshov, M. Liu. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [11] L. Cong, R. Singh. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater., 7, 1900383(2019).

    [12] A. Kodigala, T. Lepetit, Q. Gu. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [13] Q. Song, J. Hu, S. Dai. Coexistence of a new type of bound state in the continuum and a lasing threshold mode induced by PT symmetry. Sci. Adv., 6, eabc1160(2020).

    [14] H. Zhong, Y. Yu, Z. Zheng. Ultra-low threshold continuous-wave quantum dot mini-BIC lasers. Light Sci. Appl., 12, 100(2023).

    [15] S. Romano, G. Zito, S. Torino. Label-free sensing of ultralow-weight molecules with all dielectric metasurfaces supporting bound states in the continuum. Photonics Res., 6, 726-733(2018).

    [16] T. C. Tan, Y. K. Srivastava, R. T. Ako. Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing. Adv. Mater., 33, 2100836(2021).

    [17] F. Wu, J. Wu, Z. Guo. Giant Enhancement of the Goos-Hänchen shift assisted by quasibound states in the continuum. Phys. Rev. Appl., 12, 014028(2019).

    [18] X. Yin, J. Jin, M. Soljačić. Observation of topologically enabled unidirectional guided resonances. Nature, 580, 467-471(2020).

    [19] C. Zhao, G. Hu, Y. Chen. Unidirectional bound states in the continuum in Weyl semimetal nanostructures. Photonics Res., 10, 1828-1838(2022).

    [20] G. Zograf, K. Koshelev, A. Zalogina. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photonics, 9, 567-574(2022).

    [21] T. Liu, M. Qin, F. Wu. High-efficiency optical frequency mixing in all all-dielectric metasurface enabled by multiple bound states in the continuum. Phys. Rev. B, 107, 075441(2023).

    [22] X. Qi, J. Wu, F. Wu. Steerable merging bound states in the continuum on a quasi-flatband of photonic crystal slab without breaking symmetry. Photonics Res., 11, 1262-1274(2023).

    [23] M. V. Gorkunov, A. A. Antonov, Y. S. Kivshar. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett., 125, 093903(2020).

    [24] A. Overvig, N. Yu, A. Alù. Chiral quasi-bound states in the continuum. Phys. Rev. Lett., 126, 073001(2021).

    [25] J. Wu, X. Xu, X. Su. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum. Phys. Rev. Appl., 16, 064018(2021).

    [26] X. Zhang, Y. Liu, J. Han. Chiral emission from resonant metasurface. Science, 377, 1215-1218(2022).

    [27] Y. Lim, I. C. Seo, S.-C. An. Maximally chiral emission via chiral quasibound states in the continuum. Laser Photonics Rev., 17, 2200611(2023).

    [28] Y. Chen, H. Deng, X. Sha. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474-478(2023).

    [29] B. Zhen, C. W. Hsu, L. Lu. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).

    [30] M. Kang, S. Zhang, M. Xiao. Merging bound states in the continuum at off-high symmetry points. Phys. Rev. Lett., 126, 117402(2021).

    [31] Y. Zeng, G. Hu, K. Liu. Dynamics of topological polarization singularity in momentum space. Phys. Rev. Lett., 127, 176101(2021).

    [32] P. Hu, J. Wang, Q. Jiang. Global phase diagram of bound states in the continuum. Optica, 9, 1353-1361(2022).

    [33] X. Wang, J. Wang, X. Zhao. Realizing tunable evolution of Bound states in the continuum and circular polarized points by symmetry breaking. ACS Photonics, 10, 2316-2322(2023).

    [34] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836-842(2019).

    [35] C. F. Doiron, I. Brener, A. Cerjan. Realizing symmetry-guaranteed pairs of bound states in the continuum in metasurfaces. Nat. Commun., 13, 7534(2022).

    [36] S. Yang, J. C. Ndukaife. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. Light Sci. Appl., 12, 2047(2023).

    [37] C. Zhou, L. Huang, R. Jin. Bound states in the continuum in asymmetric dielectric metasurfaces. Laser Photonics Rev., 17, 2200564(2023).

    [38] J. Wang, L. Shi, J. Zi. Spin Hall effect of light via momentum-space topological vortices around bound states in the continuum. Phys. Rev. Lett., 129, 236101(2022).

    [39] H. Qin, Y. Shi, Z. Su. Exploiting extraordinary topological forces at bound states in the continuum. Sci. Adv., 8, eade75556(2022).

    [40] W. Wang, Y. K. Srivastava, T. C. Tan. Brillouin zone folding driven bound states in the continuum. Nat. Commun., 14, 2811(2023).

    [41] P. Hu, C. Xie, Q. Song. Bound states in the continuum based on the total internal reflection of Bloch waves. Natl. Sci. Rev., 10, nwac043(2023).

    [42] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photonics, 4, 723-727(2017).

    [43] E. N. Bulgakov, D. N. Maksimov, P. N. Semina. Propagating bound states in the continuum in dielectric gratings. J. Opt. Soc. Am. B, 35, 1218-1222(2018).

    [44] W. Shi, J. Gu, X. Zhang. Terahertz bound states in the continuum with incident angle robustness induced by a dual period metagrating. Photonics Res., 10, 810-819(2022).

    [45] E. N. Bulgakov, A. F. Sadreev. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B, 78, 075105(2008).

    [46] Q. Zhou, Y. Fu, L. Huang. Geometry symmetry-free and higher-order optical bound states in the continuum. Nat. Commun., 12, 4390(2021).

    [47] F. Wu, C. Fan, K. Zhu. Tailoring electromagnetic responses in a coupled-grating system with combined modulation of near-field and far-field couplings. Phys. Rev. B, 105, 245417(2022).

    [48] S. I. Azzam, V. M. Shalaev, A. Boltasseva. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [49] T. Dong, J. Liang, S. Camayd-Munoz. Ultra-low-loss on-chip zero-index materials. Light Sci. Appl., 10, 10(2021).

    [50] J. Wu, Q. Wei, F. Wu. On-chip multiple beam splitting assisted by bound states in the continuum. Opt. Lett., 47, 3135-3138(2022).

    [51] L. Gu, H. Fang, J. Li. “A compact structure for realizing Lorentzian, Fano, Fano and electromagnetically induced transparency resonance lineshapes in a microring resonator,”. Nanophotonics, 8, 841-848(2019).

    [52] K. Wang, H. Liu, Z. Li. All-dielectric metasurface-based multimode sensing with symmetry-protected and accidental bound states in the continuum. Results Phys., 46, 106276(2023).

    [53] H. Zhang, K. Wang, Z. Li. Perfect narrowband circular dichroism based on intrinsic chiral dual quasi-bound states in the continuum in terahertz metasurfaces. Results Phys., 52, 106885(2023).

    [54] H. Liu, K. Wang, H. Ma. Switchable optical vortex beam generator based on an all-dielectric metasurface governed by merging bound states in the continuum. Opt. Express, 31, 19159-19172(2023).

    [55] Y. Zhang, A. Chen, W. Liu. Observation of polarization vortices in momentum space. Phys. Rev. Lett., 120, 186103(2018).

    [56] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 20, 569-572(2003).

    [57] Z. Yu, X. Sun. Acousto-optic modulation of photonic bound state in the continuum. Light Sci. Appl., 9, 1(2020).

    [58] Z. Huang, K. Luo, Z. Feng. Resonant enhancement of second harmonic generation in etchless thin film lithium niobate heteronanostructure. Sci. China Phys. Mech. Astron., 65, 104211(2022).

    [59] S. Wu, W. Song, J. Sun. Broadband asymmetric light transport in compact lithiumniobate waveguides. Laser Photonics Rev., 17, 2300306(2023).

    [60] D. E. Zelmon, D. L. Small, D. Jundt. Infrared corrected Sellmeier coefficients for congruently grown lithium niobite and 5 mol. % magnesium oxide–doped lithium niobite. J. Opt. Soc. Am. B, 14, 3319-3322(1997).

    [61] S. Cai, S. Zong, X. Liu. Efficiently spatial field localization enabled second-harmonic and sum-frequency generation in an etchless LiNbO3 layer by guided resonant quasi-bound states in the continuum. Appl. Phys. Lett., 123, 111701(2023).

    [62] S. Feng, T. Liu, W. Chen. Enhanced sum-frequency generation from etchless lithium niobite empowered by dual quasi-bound states in the continuum. Sci. China Phys. Mech. Astron., 66, 124214(2023).

    [63] Y. Yang, W. Wang, A. Boulesbaa. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [64] Z. Zheng, L. Xu, L. Huang. Boosting second-harmonic generation in the LiNbO3 metasurface using high-Q guided resonances and bound states in the continuum. Phys. Rev. B, 106, 125411(2022).

    [65] C. W. Hsu, B. Zhen, M. Soljačić. Polarization state of radiation from a photonic crystal slab. arXiv(2017).

    Jiaju Wu, Jingguang Chen, Xin Qi, Zhiwei Guo, Jiajun Wang, Feng Wu, Yong Sun, Yunhui Li, Haitao Jiang, Lei Shi, Jian Zi, Hong Chen. Observation of accurately designed bound states in the continuum in momentum space[J]. Photonics Research, 2024, 12(4): 638
    Download Citation