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Bound states in the continuum (BICs) in artificial photonic structures have received considerable attention since
they offer unique methods for the extreme field localization and enhancement of light-matter interactions.
Usually, the symmetry-protected BICs are located at high symmetric points, while the positions of accidental
BICs achieved by tuning the parameters will appear at some points in momentum space. Up to now, to accurately
design the position of the accidental BIC in momentum space is still a challenge. Here, we theoretically and
experimentally demonstrate an accurately designed accidental BIC in a two-coupled-oscillator system consisting
of bilayer gratings, where the optical response of each grating can be described by a single resonator model. By
changing the interlayer distance between the gratings to tune the propagation phase shift related to wave vectors,
the position of the accidental BIC can be arbitrarily controlled in momentum space. Moreover, we present a
general method and rigorous numerical analyses for extracting the polarization vector fields to observe the
topological properties of BICs from the polarization-resolved transmission spectra. Finally, an application of
the highly efficient second harmonic generation assisted by quasi-BIC is demonstrated. Our work provides a
straightforward strategy for manipulating BICs and studying their topological properties in momentum
space. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.515969

1. INTRODUCTION

Bound states in the continuum (BICs) are an exception to con-
ventional bound states. They lie inside the continuum and coexist
with extended states, but they remain perfectly localized without
any radiation [1]. Although BICs were first proposed by von
Neumann and Wingner in quantum mechanisms [2], they are
general solutions of wave equations and have since been identified
in various systems [3–7]. By introducing external perturbations
or adjusting parameters of the system, a true BIC will collapse to
sharp Fano resonance with ultrahigh quality (Q) factor that is
called quasi-BIC [8–11], which can boost light-matter inter-
actions for practical applications in a variety of lasing [12–14],
biosensors [15–17], unidirectional transfer [18,19], nonlinear de-
vices [20–22], and enhancement of optical chirality [23–28].

As singular points of polarization in momentum space,
the topological properties of BICs ensure that they can be

continuously shifted in momentum space [29]. By merging
multiple BICs at different places of momentum space, the
problem of scattering losses induced by fabrication imperfec-
tions can be effectively overcome [22,29,30]. Besides, by break-
ing the symmetry of the system or adjusting the structural
parameters, various evolution phenomena including the gener-
ation and annihilation of BICs have been observed [29–33].
Different BICs can be categorized with respect to the physical
origin of far-field radiation suppression. When a system pos-
sesses a reflection or rotational symmetry, the modes with dif-
ferent symmetry classes are completely decoupled. A bound
state of one symmetry class can be embedded in the continuous
spectrum of another symmetry class, where their coupling is
forbidden as long as the symmetry is preserved. This kind
of BIC is called symmetry-protected BIC [1,10], which appears
in a variety of photonic structures such as metasurfaces
[10,11,25,34–37], photonic crystal slabs [38–41], gratings
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[18,42–44], photonic wave-guides [45,46], and so on.
Compared with the symmetry-protected BIC, the accidental
BIC obtained by tuning the parameters of the system stems
from the complete suppression of the radiation of the bound
state into the continuous channels [8,46]. In many cases, some
accidental BICs are known as Friedrich-Wintgen (FW) BIC
[8], which can be interpreted as destructive interference in
two radiating channels from two coupled resonators of a system
[47–50]. When the two resonators in the system are separated
in some distance, the accidental BIC becomes a Fabry–Perot
(FP) BIC [1,6,47]. Interestingly, the formation condition of
FP BICs is just the standing wave condition when the accumu-
lated propagation phase shift of the wave after the round-trip is
the integer multiple of 2π. In general, the symmetry-protected
BICs are fixed at highly symmetric points in momentum space
[10,11,34], while the position of accidental BICs strongly de-
pends on the geometric parameters [1,22,30,32]. Up to now, to
accurately design the position of the accidental BIC in momen-
tum space by demand remains an open question.

In this paper, we propose bilayer gratings as a coupled-
oscillators system to realize an accurately designed F-P BIC
in momentum space. We show that the position of the F-P
BIC can be freely designed in momentum space by changing
the interlayer distance between the gratings to tune the propa-
gation phase shift related to wave vectors. We further study the
evolution of BICs in momentum space. Particularly, we pro-
pose a general approach for extracting the polarization vector
fields to observe the topological properties of BICs from the
transmission spectra. Finally, as an example of application,
the highly efficient second harmonic generation assisted by
quasi-BIC is demonstrated. Our work offers a route to accu-
rately design accidental BICs, which is very useful in the ap-
plications of BICs.

2. PRINCIPLE AND DESIGN

The FP BIC is a type of accidental BIC obtained through
parameter tuning, which is commonly found in systems with
two resonances coupled to the same radiation channel. Figure 1
shows the typical theoretical model. We consider two resonance
amplitudes A � �A1,A2�T evolving in time as i∂A∕∂t � HA.
According to temporal coupled-mode theory, the Hamiltonian
can be written as follows [1]:

H �
�
ω1 κ
κ ω2

�
− i

�
γ1

ffiffiffiffiffiffiffiffiffi
γ1γ2

p
eiφffiffiffiffiffiffiffiffiffi

γ1γ2
p

eiφ γ2

�
, (1)

where κ and
ffiffiffiffiffiffiffiffiffi
γ1γ2

p
eiφ are the near-field coupling and far-

field coupling, respectively. Here φ is the propagation phase

shift between two resonances. Herein, the resonance frequen-
cies of two resonators are identical. The two eigenvalues of
H are

ω� � ω0 � κ − iγ�1� eiφ�, (2)

and the real and the imaginary parts of two eigenmodes are

Re�ω�� � ω0 � �κ � γ sin φ�,
Im�ω�� � γ�1� cos φ�:

(3)

We can further obtain the formation condition of the BIC,

φ � k0nd cos θ � mπ �m is an integer�, (4)

where k0 represents the wave vector of the single resonator
in the direction of propagation, θ is the incident angle, and
n and d denote the refractive index of the background and
distance between two resonances, respectively. When φ �
k0nd cos θ � mπ, i.e., satisfying the BIC condition, one of
the two eigenmodes becomes a BIC with a purely real eigen-
frequency, and the other eigenmode becomes more lossy with
twice the original decay rate. Notice that the propagation phase
shift related to vectors can be flexibly tuned by changing the
interlayer distance between two resonators. As a result, the for-
mation condition of the BIC can be maintained for different
wave vectors. In other words, the position of the BIC can be
arbitrarily designed in momentum space.

For a real structure, the optical features of resonant guided
modes in grating can be described by using coupled-mode
theory. Around the resonance frequency, the electromagnetic
response of the grating can be considered as a single resonator
model (SRM) [51]. Herein, we consider a two-coupled-resona-
tor model consisting of two identical one-dimensional dielectric
gratings as a common platform to demonstrate that such a BIC
can be freely designed in momentum space. Figure 2(a) shows
the schematic of the proposed structure in which the width and
height of infinitely long bars with gaps are w � 0.5a and
h � 0.54a, respectively, where a is the lattice constant. The
interlayer distance between the gratings is denoted by d, and
the dielectric constant is εr � 2. In general, the resonant re-
sponses of the grating exhibit an asymmetrical Fano line shape.
To better consider the grating as a resonator, we select the
proper material with low refractive indices contrast compared
to the background. Herein, we first calculate the dispersion re-
lation of the single grating for the transverse magnetic (TM)
polarization, as shown in Fig. 2(b). It can be seen that the res-
onance frequency will decrease as the incident angle increases.
Besides, the optical response of single grating can be described
by the SRM around the angular frequency of the guided mode
resonances (GMRs). According to the SRM, the reflectance can
be expressed as R�ω,ω0, γ0� � γ20∕�ω2

0 − ω
2� − γ20 [51], where

ω0a∕2πc � 0.727 and γ0a∕2πc � 0.0276. By fitting the re-
flectance spectrum of single grating by the SRM at
kxa∕2π � 0.122, one can see that the optical features of single
grating around the resonance frequency match well with the
SRM (see Appendix A). Thus, the optical response of single
grating can be described by a single resonator model. Next,
a freely designed BIC will be revealed in two-coupled-oscillator
system consisting of bilayer gratings.Fig. 1. Theoretical model of the two-coupled-oscillator system.
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Now, we demonstrate that the BIC supported by bilayer
gratings can be designed by adjusting the interlayer distance
between two gratings. Based on the formation condition of
BIC, one can expect the emergence of BIC by designing suit-
able interlayer distance at arbitrary wave vectors. For instance,
when θ � 10° (i.e., kxa∕2π � 0.122) and m � 1, the inter-
layer distance d � 0.99a can be obtained from Eq. (4). The
calculated band structures of bilayer gratings at d∕a � 0.99
is shown in Fig. 2(c), where the bands above and below cor-
respond to ω� and ω− bands, respectively. In this case, ω�
becomes a BIC with a purely real eigenfrequency at kxa∕2π �
0.122. Notice that there is another band marked by the gray
solid line, which stems from Brillouin zone folding. Figure 2(d)
shows the Q factors distribution of two modes along the ΓX
direction, in which a BIC with infinite Q factor is formed by
the destructive interference between two resonators. Herein,
the blue and black lines correspond to the Q factors of ω�
and ω− bands, respectively. Furthermore, as polarization singu-
larities, the topological properties of BICs can be revealed by
calculating the far-field polarization states. For more clearness,
the far-field polarization states around the BIC in momentum
space are shown in Fig. 2(e). It can be seen that the far-field
polarization state is undefined at BIC point, which is a polari-
zation singularity in momentum space. Moreover, the position
of the BIC can be arbitrarily controlled for different wave vec-
tors by adjusting the interlayer distance. Based on the forma-
tion condition of BIC, the dependence of BICs on the
interlayer distance d and kxa∕2π is given by the blue line in
Fig. 2(f ). Further, we select four points in the blue line and
calculate the corresponding Q factors around the four BIC
modes �ω��, as shown in the inset of Fig. 2(f ). When the in-
terlayer distance is d � 1.36a, the position of BIC can be ex-
pected to appear at kxa∕2π � 0.2 [corresponding to the red
point in Fig. 2(f )]. In general, the BICs will disappear, and
the positions of accidental BICs are undefined when the

geometric parameters change. However, by decreasing (increas-
ing) the interlayer distance, the increase (decrease) in propaga-
tion phase shift related to the wave vector can be compensated.
As a consequence, the position of the BIC can be arbitrarily
designed in momentum space.

Based on the formation condition and the conservation of
topological charge, we can predict and understand the behav-
iors of BICs when the parameters of the system are varied. To
intuitively show the evolution of BICs that are robust in mo-
mentum space, we show the far-field polarization maps of the
ω� band at relatively small momentum space in Fig. 3. Our
system exhibits {C2v, σh, T } symmetries, and the typical band
structure for d∕a � 0.68 is shown in Fig. 3(a). Owing to the
non-zero tangential momentum of the wave vector, the dual
BICs marked by the red circle will exist at kxa∕2π �
�0.075 at the symmetric positions in momentum space, as
shown in Fig. 3(a). Figure 3(b) gives the polarization vectors
together with the Q factor as the background of the ω� band
in momentum space for d∕a � 0.68, where the white arrows
represent the distribution of polarization fields. There are two
BICs carrying the same topological charges q � �1 on the kx
axis, and the topological charge can be defined by [29]

q � 1

2π

I
C
dk · ∇kϕ�k�, (5)

where C indicates a closed path in reciprocal space that sur-
rounds the BIC along the counterclockwise direction. Here,
ϕ�k� � arg�cx�k� � icy�k�� is the angle of the polarization vec-
tor, and cx,y�k� �

RR
cellE

	
x,ye−ikx ·x−iky ·ydxdy∕

RR
celldxdy. In addi-

tion, the sign of the component of polarization vectors near the
BIC and the polarization vectors winds around the BICs with
charge q � �1 are shown in Fig. 3(c). By decreasing d∕a, the
dual BICs with the same charges gradually merge to the center
in momentum space, as shown in Fig. 3(d). Owing to the con-
servation of topological charges: annihilation cannot happen

Fig. 2. (a) Schematic of the bilayer grating for a freely designed BIC. (b) Dispersion relation of single layer grating. (c) Band structure of the
bilayer grating at d∕a � 0.99. The red circle represents the position of kxa∕2π � 0.122. (d) The corresponding Q factors. (e) Far-field polarization
states around BIC. (f ) The dependence of BICs on the interlayer distance d and kxa∕2π. The inset givesQ factors around the four BIC modes (ω�)
for four different interlayer distances indicated by the color points.
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between two BICs with the same charge. It is noted that such
accidental BICs are a common wave phenomenon in optical
systems, and merging evolution of accidental BICs also exists
in other structures [22,29,32,52–54]. Usually, the FW-type ac-
cidental BICs come from the coupling between the guided
mode resonances and Fabry–Perot modes [32]. Different from
the previous works, the formation of a Fabry–Perot type acci-
dental BIC stems from the coupling between two oscillators,
and its position is controllable.

3. SIMULATION AND EXPERIMENTAL RESULTS

The characteristics of BICs can be observed by measuring the
transmission spectra of the structure. To meet the requirement
of low refractive index contrast compared to air, the Teflon is
used as the dielectric material for grating fabrication in the micro-
wave region. According to the manufacturer datasheet, the rel-
ative permittivity of Teflon is 2� 0.03 and the loss tangent is
tan δ ≈ 1 × 10−3 at 30 GHz. It should be pointed out that the
material loss would hardly affect the position of BIC, but it
would affect the Q factor of quasi-BIC. The larger the material
loss is, the more the decrease of the Q factor would be. In prin-
ciple, the size of the structure and operating wavelength can be
arbitrarily designed based on the scaling law. In the near-infrared
or visible region, SiO2 can be used as a candidate material.
Owing to the limitation of experimental conditions, as an ex-
ample, we perform the experiment in the microwave region.
We design two samples to observe the properties of BICs.
In the two fabricated samples, each grating has the same lattice
constant a � 7.4 mm and gap width w � 0.5a, whereas the
interlayer distance d between the upper and bottom gratings
is selected to be 7.35 mm and 9.1 mm, respectively. The sizes
of two samples are both 49 cm × 49 cm, and the size of the

unit cell is smaller than the wavelength. It should be pointed
out that the sample size under test is related to the waist of the
input beam as it must be shorter than the sample size in order to
avoid any undesired diffraction at the edge of the sample. In
general, the side length of the sample should be greater than
50 times the incident wavelength. Herein, the side length of
the sample is 49 cm, which is 51 times the incident wavelength.
In the experiment, the sample is mounted to a holder and fixed
on a rotating platform in the middle of two lens antennas. One
of the antennas acts as transmitter, and the other works as
receiver. Both antennas are connected to a vector network ana-
lyzer (VNA, Keysight N5245B) via coaxial cables, and the
experimental measurements are performed in an anechoic
chamber. The schematic view and photos of the experimental
setup and sample are shown in Fig. 4. In fact, the lens antenna
can transmit a Gaussian-like beam with a larger waist radius,
which has a smaller divergence angle and better angular reso-
lution. Thus, we use a lens antenna rather than a horn antenna
as the transmitting and receiving antennas. Of course, the pres-
ence of lenses will bring some ripples with noticeable amplitude
in the measured S-parameters because of the multiple reflec-
tions between the lenses and the sample under test. To over-
come this problem, time-domain gating is applied. The
transmission coefficient of the sample can be obtained by meas-
uring the receiving signal (S21) with and without the sample.

To determine the position of BIC, we first give the simu-
lated transmittance spectra of the structure along the direction
of kx at d∕a � 0.99, as shown in Fig. 5(a). One can see that the
BIC is located in the vicinity of kxa∕2π � 0.122, and the si-
mulated transmittance spectra agree well with the band struc-
ture in Fig. 2(c). In addition, the far-field polarization of the
eigenmode is undefined at BIC point, i.e., S1 � S2 � S3 � 0
[55], where Si�1,2,3 represent the Stokes parameters. We can

Fig. 3. (a) Simulated band structure at d∕a � 0.68. (b) Calculated polarization vectors around BICs with the Q factors as background in the
Brillouin zone for d∕a � 0.68. (c) Sign of polarization vector components around BICs. (d) Calculated polarization vectors around BICs with theQ
factors as background in the Brillouin zone for d∕a � 0.39.
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use the polarization-resolved transmission spectra with magni-
tude and phase at two polarizer angles, i.e., along ŝ and p̂, to
extract the polarization vector fields at the frequency interested.
The corresponding Stokes parameters can be written as

S0 � jtpp − tpj2 � jt spj2, S1 � jtpp − tpj2 − jt spj2,
S2 � 2Re��tpp − tp�t	sp�, S3 � 2 Im��tpp − tp�t	sp�: (6)

Here, t sp is the coefficient of transmission converted into the s
polarization for the p-polarized incident light, and similarly for
the other elements. tpp and t sp can be extracted from transmis-
sion spectra with magnitude and phase, and tp for the direct
transmission process is obtained by fitting the background
in the transmission spectra to the transmission coefficients
through a uniform slab with the same thickness and with an
effective dielectric constant [56]. The detailed derivation of
the above expressions is given in Appendix B. To more

accurately determine the position of the BIC, Fig. 5(b) shows
the Stokes parameters at d∕a � 0.99. It is seen that all com-
ponents of Stokes parameters are equal to zero at kxa∕2π �
0.122. As a result, the position of BIC can be accurately de-
termined, which is consistent with that in Fig. 2(c). In order
to further confirm the theoretical results, we experimentally ob-
serve the transmittance spectra of the structure at d∕a � 0.99,
as shown in Fig. 5(c). Overall, the measured results agree
with the simulated results. Owing to the influence of in-
trinsic loss and scattering loss induced by fabrication imperfec-
tion, the linewidth of the measured transmission spectra is
somewhat widened. Furthermore, we set the interlayer distance
d∕a � 1.23 to observe the properties of BICs. For this struc-
ture, the position of the BIC is expected to appear at
kxa∕2π � 0.172, corresponding to the case at the incident an-
gle of 15°. In Fig. 5(d), we show the simulated transmittance
spectra of the structure. We see that a BIC occurs in the
vicinity of kxa∕2π � 0.172, and the corresponding measured

Fig. 4. Schematic view and photos of the experimental setup and sample.

Fig. 5. Simulated transmittance spectra of the structure for TM polarization at (a) d∕a � 0.99 and (d) d∕a � 1.23. The circles represent the
positions of BICs. (b), (e) Corresponding Stokes parameters around BICs points. (c), (f ) Corresponding experimental results.
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transmittance spectra are shown in Fig. 5(f ). As predicted,
when the interlayer distance d∕a increases, the position of
BIC moves along the kx axis [in accordance with Fig. 2(f )].
Similarly, all components of Stokes parameters for the second
structure are equal to zero for BIC point at kxa∕2π � 0.172, as
shown in Fig. 5(e). These findings experimentally demonstrate
that the F-P BICs can be accurately designed and observed
by demand.

To further demonstrate the topological features of BIC in
momentum space, we calculate the far-field polarization states
around BIC under different interlayer distances. Here the
polarization vectors are calculated from the eigenfields in the
unit cell using COMSOL Multiphysics, and the Stokes param-
eters are S0 � jExj2 � jEyj2, S1 � jExj2 − jEyj2, S2 �
2Re�ExE	

y �, and S3 � 2 Im�ExE	
y �, respectively. Figure 6(a)

shows the calculated polarization vectors in momentum space
when d∕a � 0.99, where a polarization singularity with charge
q � �1 (i.e., BIC) at kxa∕2π � 0.122 appears. As d∕a in-
creases from 0.99 to 1.23, the polarization singularity moves
along the kx axis. In the case of d∕a � 1.23, the polarization
singularity is located at kxa∕2π � 0.172, as shown in Fig. 6(c).
Utilizing the method of extracting eigenfields, we can theoreti-
cally understand the topological characteristics of the BIC in
momentum space. Nevertheless, extracting the eigenfields ex-
perimentally is quite difficult, particularly in the optical region.
As a result, to experimentally observe the topological features of
the BIC in momentum space remains a challenge. To reduce
the difficulty of the experiment, we propose a general method
and rigorous numerical analyses for extracting the polarization
vector fields to observe the topological properties of BICs from
the polarization-resolved transmission spectra. The detail is
given in Appendix B. Based on Eq. (6), Figs. 6(b) and 6(d)
give the results of corresponding far-field polarization vectors
by extracting the polarization-resolved transmission spectra,
which are consistent with the calculated results from the eigen-
fields. It should be pointed out that the intervals between
far-field polarization vectors look larger in comparison to the
calculated results from the eigenfields because of a relatively

larger wave vector extraction interval. In a word, the transmis-
sion spectra extraction method provides us with a very feasible
way to experimentally observe the topological features of BICs.

Now we show that a designed accidental quasi-BIC can be
used for highly efficient second harmonic generation (SHG).
The schematic of the proposed structure is given in Fig. 7(a).
The geometric parameters of the bilayer grating including the
lattice constant, height, width, and interlayer distance are
a � 784 nm, h � 421 nm, w � 228 nm, and d � 776 nm,
respectively. Here the nonlinear material is selected to be
LiNbO3 as it has large second-order nonlinear susceptibilities,
and it is highly transparent from the near-infrared to near-
ultraviolet region [57–59]. LiNbO3 is an anisotropy material
with a diagonal refractive index distribution of diagonal (ne ,
no, no,) for the optical axis along the x direction. As shown
in Fig. 7(a), ne is along the x direction, and no is along the
y or z direction. In our calculation, we suppose that
no � ny � nz � 2.2264 and ne � nx � 2.1506, which are
obtained in the experiment [60]. According to the formation
condition of BIC, one can determine the position of BIC by
designing suitable interlayer distance. For instance, when the
interlayer distance d � 776 nm and m � 1, BIC can form
at the incident angle θ � 8°. Then, we calculate the reflectance
spectra of the structure at different incident angles, as shown in
Fig. 7(b). It is seen that ω� becomes a BIC with vanishing line
width at θ � 8°. In the case of θ � 9°, the reflectance spectra
exhibit dual asymmetric Fano line shapes, which correspond to
ω� and ω−. We focus on ω� that corresponds to quasi-BIC,
and the corresponding electric field distributions at the x–z
cross section (y � a∕2) and the y–z cross section (x � a∕2)
of the unit cell for TM wave are shown in Fig. 7(c). One
can see that the electric fields are highly localized inside the
structure. The intensity of generated second harmonic light
strongly depends on the intensity of the confined electric field
within the structure. Owing to its large mode profile volume in
bilayer grating when compared with other photonic structures
[57–62], a highly efficient SHG would be achieved.

In general, SHG in photonic structure can be characterized
as [63]

P�2ω� �
Z
v
χ�2��r,ω��E loc�r,ω��2dV : (7)

In Eq. (7), χ�2��r,ω� denotes tensor of second-order nonlinear
susceptibility, E loc�r,ω� is the local electric field inside struc-
ture, and V is the volume of a unit cell. Next, we calculate the
nonlinear efficiency enhanced by the quasi-BIC based on the
second-order polarization density (PSH

x , PSH
y , PSH

z ) and the
electric field of the pumping light (Ex , Ey,Ez) in LiNbO3

as given by

2
64
PSH
x

PSH
y

PSH
z

3
75� 2ε0

2
64

0 0 0 0 d 22 d 31

d 31 d 31 d 33 0 0 0
d 22 0 −d 22 d 31 0 0

3
75

2
6666664

E2
x

E2
y

E2
z

2EyEz
2ExEz
2ExEy

3
7777775
:

(8)

Herein, the nonlinear coefficients are d 22 � 1.9 pm∕V,
d 31 � −3.2 pm∕V, and d 33 � 19.5 pm∕V [60,64],

Fig. 6. Calculated polarization vectors around BICs in momentum
space based on the eigenfield extraction method for (a) d∕a � 0.99
and (c) d∕a � 1.23. (b), (d) Corresponding results based on the trans-
mission spectra extraction method.
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respectively. The SHG conversion efficiency can be written as
η � PSHG∕Pin. Figure 7(d) shows the calculated reflectance
and SHG conversion efficiency versus the wavelength of pump-
ing light at θ � 8.3°. Assisted by quasi-BIC, the SHG conver-
sion efficiency reaches 2% under pumping intensity
I 0 � 1MW∕cm2. In addition, we calculate the dependence
of the SHG conversion efficiency on the incident angle, as
shown in Fig. 7(e). When θ � 8.9°, the SHG conversion effi-
ciency is only 0.02%. As θ gradually approaches 8° (BIC con-
dition), the SHG conversion efficiency increases significantly.
When θ � 8.1°, the SHG conversion efficiency reaches
57.4%. Similarly, we calculate the dependence of the SHG con-
version efficiency on the interlayer distance at θ � 8.9°, as
shown in Fig. 7(f ). As the interlayer distance decreases from
776 to 736 nm (approaching the BIC condition at
θ � 8.9°), the SHG conversion efficiency rapidly increases
from 0.02% to 61.5%. Overall, a highly efficient SHG can
be achieved in a wide parameter space, owing to the high Q
factor and large mode profile volume of the designed
quasi-BIC.

4. CONCLUSION

In conclusion, an accurately designed accidental BIC in a
coupled-resonators system consisting of the bilayer grating
is theoretically and experimentally investigated. We show
that the position of the BIC can be arbitrarily controlled in

momentum space by changing the interlayer distance between
the gratings to tune the propagation phase shift related with
the wave vector. Besides, we propose a general method for
extracting the polarization vector fields to observe the topologi-
cal properties of BICs. As an example of an application, the
highly efficient SHG assisted by the quasi-BIC is also given.
Besides highly efficient SHG, these freely designed BICs in
momentum space would be very useful for the design of high-
efficiency filters, ultrasensitive sensors, and so on.

APPENDIX A: FITTING REFLECTANCE SPECTRA
BY THE SINGLE RESONATOR MODEL

The optical response of single grating can be described by the
single resonator model (SRM) around the angular frequency of
the guided mode resonance (GMR). Figure 8 shows the calcu-
lated and fitted reflectance spectra by SRM.

APPENDIX B: EXTRACTION OF POLARIZATION
VECTOR FIELDS FROM TRANSMISSION
SPECTRA

We can use the polarization-resolved transmission spectra to
extract the polarization vector fields of the band of interest.

Here we consider a system with two-fold in-plane rotational
symmetry and mirror symmetry σz, as illustrated in Fig. 9.
Under these conditions the column vectors s� and s−

Fig. 7. Schematic of the bilayer grating structure for highly efficient SHG. (b) Reflectance spectra of the structure at different incident angles for
TM polarization. (c) Electric field distributions at the x–z cross section (y � a∕2) and the y–z cross section (x � a∕2) at the wavelength of quasi-
BIC at θ � 9°. (d) Calculated reflectance and SHG conversion efficiency versus the wavelength of pumping light at θ � 8.3°. (e) Dependence of the
SHG conversion efficiency on the incident angle. (f ) Dependence of the SHG conversion efficiency on the interlayer distance at θ � 8.9°.
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describing the incoming and outgoing electric field vectors can

be written as s� �

0
BBB@

Eu�
s

Ed�
s

Eu�
p

Ed�
p

1
CCCA, s− �

0
BBB@

Eu−
s

Ed−
s

Eu−
p

Ed−
p

1
CCCA, where sub-

scripts s and p denote the TE and TM polarizations, respec-
tively, and the superscripts u and d denote the waves in the
upper and lower half-spaces with respect to the structure.
Considering TM polarization incidence from upper half-space,
the incoming electric field vector can be expressed as

s� �

0
B@

0
0

Eu�
p
0

1
CA �

ffiffiffiffiffi
I 0

p
eiϕ0

0
B@

0
0
1
0

1
CA: (B1)

The corresponding outgoing electric field vector can be
written as

s− �
ffiffiffiffiffi
I 0

p
eiϕ0S

0
B@

0
0
1
0

1
CA, (B2)

where S is the scattering matrix of the system. Generally, S can
be decomposed into two parts: S � C � C r , where C and C r

describe the non-resonant process and resonant process for
scattering, respectively. For a non-resonant system, S can be
written as

S � C �

0
BB@

rs t s 0 0
t s rs 0 0
0 0 rp tp
0 0 tp rp

1
CCA, (B3)

while a resonant system has a scattering matrix that can be ex-
pressed as

S �

0
BB@

rss t ss rsp t sp
t ss rss t sp rsp
rps tps rpp tpp
tps rps tpp rpp

1
CCA: (B4)

One can clearly see that the off-diagonal 2 × 2 blocks represent
individual contributions from resonance. Substituting Eq. (B4)
into Eq. (B2) produces

s− �
ffiffiffiffiffi
I0

p
eiϕ0S

0
B@

rsp
t sp
rpp
tpp

1
CA: (B5)

We only consider the trsnsmission spectra, so s− can be sim-
plified as

E d− �
ffiffiffiffiffi
I 0

p
eiϕ0

�
t sp
tpp

�
: (B6)

Here E d− represents the outgoing electric field vectors in the
lower half-space of the structure. Considering the effect of
analyzers:

E d− · t̂ � ��t̂ · ŝ�t sp � �t̂ · p̂�tpp�
ffiffiffiffiffi
I 0

p
eiϕ0 , (B7)

where t̂ is the unit vector of the polarization analysis along the
p̂, the intensity received by the receiver is

I � I 0j�t̂ · ŝ�t sp � �t̂ · p̂�tppj2: (B8)

Normalized by I 0, the transmittance of system for TM polari-
zation incidence can be written as

T p � j�t̂ · ŝ�t sp � �t̂ · p̂�tppj2: (B9)

If we adjust t̂ along the ŝ, p̂, the corresponding transmittance is
T sp � jt spj2, T pp � jtppj2, respectively. In general, Jones vec-
tors can be defined by two orthogonal polarization vectors. For
convenience, we choose ŝ and p̂ as basis, and the corresponding
Stokes parameters can be written as

S̃0 � T pp � T sp � jtppj2 � jt spj2,
S̃1 � T pp − T sp � jtppj2 − jt spj2,
S̃2 � 2Re�tppt	sp�,
S̃3 � 2 Im�tppt	sp�, (B10)

where “	” denotes complex conjugate. It is noted that the ex-
pression above represents the polarization vectors contributed
by direct process and resonance. As a result, S̃ i�0,1,2,3 represent
the polarization vectors of non-eigenstates. Based on Eqs. (B3)
and (B4), the contribution from the direct process to getting

Fig. 8. Reflectance spectrum of the single grating for TM polariza-
tion at kxa∕2π � 0.122. Red solid line represents the calculated re-
flectance spectra. Blue circle denotes the fitting reflectance spectrum
based on SRM.

Fig. 9. Schematic of a system with two-fold in-plane rotational sym-
metry and mirror-symmetry along z.
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polarization vectors of eigenstates should be subtracted. Thus,
the Stokes parameters can be defined as

S0 � jtpp − tpj2 � jt spj2, S1 � jtpp − tpj2 − jt spj2,
S2 � 2Re��tpp − tp�t	sp�, S3 � 2 Im��tpp − tp�t	sp�: (B11)

Here t sp is the coefficient of transmission converted into the s
polarization for the p-polarized incident light, and similarly for
the other elements. tpp and t sp can be extracted from transmis-
sion spectra with magnitude and phase, and tp for the direct
transmission process is formed by fitting the background in
the transmission spectra to the transmission coefficients
through a uniform slab with the same thickness and with an
effective dielectric constant.

To determine the far-field polarization states, we need to get
the polarization-resolved transmission spectra with magnitude
and phase at two polarizer angles, i.e., along ŝ and p̂. The sche-
matic view of determining the projection of polarization vector
is shown in Fig. 10. Here we define the polarization state of the
resonant radiation as d̂ . The two axes of polarizations are ŝ and
p̂, determined by the incident plane and propagation direction
k̂. The angle between the z axis and k̂ is denoted by θ.
Additionally, we determine ϕs−p as the angle of polarization vec-
tor d̂ relative to p̂ in ŝ − p̂ plane and ϒ as the angle between the
ΓZ i and the ΓX directions in momentum space. Generally
speaking, polarization states of radiation are elliptical except
high-symmetry directions. Owing to the 180° rotational sym-
metry C2 of the structure, these polarization states are close to
linear polarization [65]. We regard approximatively polariza-
tion states as linear polarization. The angle ϕs−p can be ex-
pressed as

ϕs−p �
1

2 arg�S1 � iS2�
: (B12)

Since the ŝ − p̂ plane rotates with incident plane, we project the
polarization vector onto the x–y plane. The corresponding geo-
metric relation is

φ � ϒ� arctan

�
tan ϕs−p

cos θ

�
: (B13)

Here φ denotes the angle of projected polarization vector rel-
ative to ΓX direction.
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