• Journal of Semiconductors
  • Vol. 44, Issue 1, 012701 (2023)
Li Zhong1, Xiaobao Li1、2、*, Wei Wang1, and Xinle Xiao3、**
Author Affiliations
  • 1School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
  • 2Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
  • 3Key Laboratory of MicroNano Powder and Advanced Energy Materials of Anhui Higher Education Institute, School of Chemistry and Materials Engineering, Chizhou University, Chizhou 247000, China
  • show less
    DOI: 10.1088/1674-4926/44/1/012701 Cite this Article
    Li Zhong, Xiaobao Li, Wei Wang, Xinle Xiao. Electromechanical and photoelectric properties of a novel semiconducting Janus InGaSSe monolayer[J]. Journal of Semiconductors, 2023, 44(1): 012701 Copy Citation Text show less
    References

    [1] B T Zhang, J Liu, S Z Yue et al. Hot electron injection: An efficacious approach to charge LaCoO3 for improving the water splitting efficiency. Appl Catal B, 219, 432(2017).

    [2] W Wang, M O Tade, Z P Shao. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev, 44, 5371(2015).

    [3] M M Ma, Y B Huang, J Liu et al. Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting. J Semicond, 41, 091702(2020).

    [4] I Concina, Z H Ibupoto, A Vomiero. Electrochemical water splitting: Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv Energy Mater, 7, 1770138(2017).

    [5] H Zhao, Z Y Dai, X Y Xu et al. Integrating semiconducting catalyst of ReS2 nanosheets into P-silicon photocathode for enhanced solar water reduction. ACS Appl Mater Interfaces, 10, 23074(2018).

    [6] S Y Reece, J A Hamel, K Sung et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 334, 645(2011).

    [7] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [8] M M Alyörük. Piezoelectric properties of monolayer II-VI group oxides by first-principles calculations. Phys Status Solidi B, 253, 2534(2016).

    [9] X M Li, X Zhang, H Park et al. Editorial: Electronics and optoelectronics of graphene and related 2D materials. Front Mater, 7, 235(2020).

    [10] B Liu, K Zhou. Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Prog Mater Sci, 100, 99(2019).

    [11] C Li, J Li, Y B Huang et al. Recent development in electronic structure tuning of graphitic carbon nitride for highly efficient photocatalysis. J Semicond, 43, 021701(2022).

    [12] H Taghinejad, D A Rehn, C Muccianti et al. Defect-mediated alloying of monolayer transition-metal dichalcogenides. ACS Nano, 12, 12795(2018).

    [13] M Qiao, J Liu, Y Wang et al. PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts. J Am Chem Soc, 140, 12256(2018).

    [14] Y H Sun, X J Wang, X G Zhao et al. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J Semicond, 39, 072001(2018).

    [15] A Y Lu, H Y Zhu, J Xiao et al. Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol, 12, 744(2017).

    [16] J Zhang, S Jia, I Kholmanov et al. Janus monolayer transition-metal dichalcogenides. ACS Nano, 11, 8192(2017).

    [17] L Ju, M Bie, J Shang et al. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J Phys Mater, 3, 022004(2020).

    [18] P Zhao, Y D Ma, X S Lv et al. Two-dimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy, 51, 533(2018).

    [19] X F Zhou, B Shen, A Lyubartsev et al. Semiconducting piezoelectric heterostructures for piezo- and piezophotocatalysis. Nano Energy, 96, 107141(2022).

    [20] J Schneider, M Matsuoka, M Takeuchi et al. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem Rev, 114, 9919(2014).

    [21] G F Liao, Y Gong, L Zhang et al. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ Sci, 12, 2080(2019).

    [22] P Wang, Y X Zong, H Liu et al. Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J Mater Chem C, 9, 4989(2021).

    [23] R Rahaman, M Sharmin, J Podder. Band gap tuning and p to n-type transition in Mn-doped CuO nanostructured thin films. J Semicond, 43, 012801(2022).

    [24] Z Yin, M Hu, J Liu et al. Tunable crystal structure of Cu-Zn-Sn-S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation. J Semicond, 43, 032701(2022).

    [25] H J Lee, S W Lee, H Hwang et al. Vertically oriented MoS2/WS2 heterostructures on reduced graphene oxide sheets as electrocatalysts for hydrogen evolution reaction. Mater Chem Front, 5, 3396(2021).

    [26] S K Wang, C D Ren, H Y Tian et al. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. Phys Chem Chem Phys, 20, 13394(2018).

    [27] C Q Dang, A L Lu, H Y Wang et al. Diamond semiconductor and elastic strain engineering. J Semicond, 43, 021801(2022).

    [28] L Thulin, J Guerra. Calculations of strain-modified anatase TiO2 band structures. Phys Rev B, 77, 195112(2008).

    [29] Q Gao, H Sahin, J Kang. Strain tunable band structure of a new 2D carbon allotrope C568. J Semicond, 41, 082005(2020).

    [30] P Giannozzi, S Baroni, N Bonini et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter, 21, 395502(2009).

    [31] P Giannozzi, O Andreussi, T Brumme et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J Phys: Condens Matter, 29, 465901(2017).

    [32] J Heyd, G E Scuseria, M Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 118, 8207(2003).

    [33] J Heyd, G E Scuseria, M Ernzerhof. Erratum: "Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys, 124, 219906(2006).

    [34] D Vanderbilt. Berry-phase theory of proper piezoelectric response. J Phys Chem Solids, 61, 147(2000).

    [35] S D Guo. Phonon transport in Janus monolayer MoSSe: A first-principles study. Phys Chem Chem Phys, 20, 7236(2018).

    [36] L Dong, J Lou, V B Shenoy. Large In-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 11, 8242(2017).

    [37] J L Ericksen. On the Cauchy—Born rule. Math Mech Solids, 13, 199(2008).

    [39] R Peng, Y D Ma, B B Huang et al. Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J Mater Chem A, 7, 603(2019).

    [40] K Kaasbjerg, K S Thygesen, A P Jauho. Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys Rev B, 87, 235312(2013).

    [41] J Y Xi, M Q Long, L Tang et al. First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale, 4, 4348(2012).

    [42] W J Yin, B Wen, G Z Nie et al. Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J Mater Chem C, 6, 1693(2018).

    [43] Y Z Zhang, H Ye, Z Y Yu et al. First-principles study of square phaseMX2 and Janus MXϒ (M= Mo, W; X, ϒ = S, Se, Te) transition metal dichalcogenide monolayers under biaxial strain. Phys E, 110, 134(2019).

    [44] A Chaves, J G Azadani, H Alsalman et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl, 4, 1(2020).

    Li Zhong, Xiaobao Li, Wei Wang, Xinle Xiao. Electromechanical and photoelectric properties of a novel semiconducting Janus InGaSSe monolayer[J]. Journal of Semiconductors, 2023, 44(1): 012701
    Download Citation