• Journal of Innovative Optical Health Sciences
  • Vol. 5, Issue 4, 1250023 (2012)
TREVOR D. MCKEE1、2、*, JUAN CHEN1, IAN CORBIN1、3, GANG ZHENG1、4, and RAMA KHOKHA1、4
Author Affiliations
  • 1Ontario Cancer Institute University Health Network, Toronto, Ontario
  • 2STTARR Innovation Center University Health Network, Toronto, Canada
  • 3Advanced Imaging Research Center University of Texas Southwestern Medical Center at Dallas Dallas, USA
  • 4Department of Medical Biophysics University of Toronto, Toronto, Canada
  • show less
    DOI: 10.1142/s179354581250023x Cite this Article
    TREVOR D. MCKEE, JUAN CHEN, IAN CORBIN, GANG ZHENG, RAMA KHOKHA. QUANTIFYING NANOPARTICLE TRANSPORT IN VIVO USING HYPERSPECTRAL IMAGING WITH A DORSAL SKINFOLD WINDOW CHAMBER[J]. Journal of Innovative Optical Health Sciences, 2012, 5(4): 1250023 Copy Citation Text show less
    References

    [1] R. Ng, N. Better, M. D. Green, "Anticancer agents and cardiotoxicity," Semin. Oncol. 33(1), 2-14 (2006).

    [2] A. Pluen et al., "Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial versus subcutaneous tumors," Proc. Natl. Acad. Sci. USA 98(8), 4628-4633 (2001).

    [3] T. D. McKee et al., "Degradation of fibrillar collagen in a human melanoma xenograft improves the effi- cacy of an oncolytic herpes simplex virus vector," Cancer Res. 66(5), 2509-2513 (2006).

    [4] H. Maeda et al., "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review," J. Control Release 65(1-2), 271-284 (2000).

    [5] F. Yuan et al., "Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size," Cancer Res. 55(17), 3752-3756 (1995).

    [6] S. K. Hobbs et al., "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95(8), 4607-4612 (1998).

    [7] H. Cabral et al., "Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size," Nat. Nanotechnol. 6(12), 815-823 (2011).

    [8] R. A. Silva et al., "Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes," Proc. Natl. Acad. Sci. USA 105(34), 12,176-12,181 (2008).

    [9] W. V. Rodrigueza et al., "Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells," J. Biol. Chem. 274(29), 20,344-20,350 (1999).

    [10] M. M. Shahzad et al., "Targeted delivery of small interfering RNA using reconstituted highdensity lipoprotein nanoparticles," Neoplasia 13(4), 309-319 (2011).

    [11] A. Hrzenjak et al., "Inhibition of lung carcinoma cell growth by high density lipoprotein-associated alpha-tocopheryl-succinate," Cell Mol. Life Sci. 61(12), 1520-1531 (2004).

    [12] L. K. Mooberry et al., "Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier," J. Drug Target. 18(1), 53-58 (2010).

    [13] P. J. Pussinen et al., "The human breast carcinoma cell line HBL-100 acquires exogenous cholesterol from high-density lipoprotein via CLA-1 (CD-36 and LIMPII analogous 1)-mediated selective cholesteryl ester uptake," Biochem. J. 349(2), 559-566 (2000).

    [14] M. K. Bijsterbosch, T. J. Van Berkel, "Lactosylated high density lipoprotein: A potential carrier for the site-specific delivery of drugs to parenchymal liver cells," Mol. Pharmacol. 41(2), 404-411 (1992).

    [15] Z. Zhang et al., "Biomimetic nanocarrier for direct cytosolic drug delivery," Angew. Chem. Int. Ed. Engl. 48(48), 9171-9175 (2009).

    [16] K. K. Ng, J. F. Lovell, G. Zheng, "Lipoproteininspired nanoparticles for cancer theranostics," Acc. Chem. Res. 44(10), 1105-1113 (2011).

    [17] M. Yang et al., "Attenuation of nontargeted cellkill using a high-density lipoprotein-mimicking peptide-phospholipid nanoscaffold," Nanomedicine (Lond ) 6(4), 631-641 (2011).

    [18] M. Yang et al., "Efficient cytosolic delivery of siRNA using HDL-mimicking nanoparticles," Small 7(5), 568-573 (2011).

    [19] Lin Q. et al., "Efficient systemic delivery of siRNA by using HDL-mimicking peptide lipid nanoparticles," Nanomedicine (Lond ) accepted (2012).

    [20] R. I. Corbin et al., "Enhanced cancer-targeted delivery using engineered high-density lipoproteinbased nanocarriers," J. Biomed. Nanotechnol. 3, 1-10 (2007).

    [21] Z. Zhang et al., "HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting," Small 6(3), 430-437 (2010).

    [22] H. Jin et al., "Investigating the specific uptake of EGF-conjugated nanoparticles in lung cancer cells using fluorescence imaging," Cancer Nano 1, 71-78 (2010).

    [23] W. Chen et al., "RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe," FASEB J. 24(6), 1689-1699 (2010).

    [24] P. Thevenaz, U. E. Ruttimann, M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process 7(1), 27-41 (1998).

    [25] S. D. Molyneux et al., "Prkar1a is an osteosarcoma tumor suppressor that defines a molecular subclass in mice," J. Clin. Invest. 120(9), 3310-3325 (2010).

    [26] J. Y. Perentes et al., "In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts," Nat. Methods 6(2), 143-145 (2009).

    [27] S. Eisenberg, H. G. Windmueller, R. I. Levy, "Metabolic fate of rat and human lipoprotein apoproteins in the rat," J. Lipid. Res. 14(4), 446-458 (1973).

    [28] Z. Li et al., "Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics," FASEB J. 19(14), 1978-1985 (2005).

    TREVOR D. MCKEE, JUAN CHEN, IAN CORBIN, GANG ZHENG, RAMA KHOKHA. QUANTIFYING NANOPARTICLE TRANSPORT IN VIVO USING HYPERSPECTRAL IMAGING WITH A DORSAL SKINFOLD WINDOW CHAMBER[J]. Journal of Innovative Optical Health Sciences, 2012, 5(4): 1250023
    Download Citation