• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 2, 143 (2021)
Jia-Bin LI*, WANG-Xiao-Hua, and Wen-Jie WANG
Author Affiliations
  • School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.02.001 Cite this Article
    Jia-Bin LI, WANG-Xiao-Hua, Wen-Jie WANG. Mechanism analysis of terahertz graphene electro-optic modulator with plasma structure[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 143 Copy Citation Text show less
    References

    [1] A S Mayorov, R V Gorbachev, S V Morozov et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett., 11, 2396(2011).

    [2] K I Bolotin, K J Sikes, Z Jiang et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 146, 351-355(2008).

    [3] X Gan, R J Shiue, Y Gao et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics, 7, 883-887(2013).

    [4] X Hong, A Posadas, K Zou et al. High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. Phys. Rev. Lett., 102, 136808(2009).

    [5] S. Winnerl, M. Orlita, P. Plochocka et al. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. Phys. Rev. Lett., 107, 237401(2011).

    [6] R. R. Nair, P. Blake, A. N. Grigorenko et al. Fine structure constant defines visual transparency of graphene. Science, 320, 1308-1308(2008).

    [7] K. S. Kim, Y. Zhao, H. Jang et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706-710(2009).

    [8] S. Bae, H. Kim, Y. Lee et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol., 5, 574-578(2010).

    [9] V. J. Sorger, R. Amin, J. B. Khurgin et al. Scaling vectors of attoJoule per bit modulators. J. Opt., 20, 014012(2018).

    [10] A. N. Tait, T. F. Lima, E. Zhou et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep., 7, 7430(2017).

    [11] K. Liu, S. Sun, A. Majumdar et al. Fundamental Scaling Laws in Nanophotonics. Sci. Rep., 6, 37419(2016).

    [12] M. Liu, X. Yin, E. Ulinavila et al. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [13] M. Liu, X. Yin, X. Zhang. Double-layer graphene optical modulator. Nano Lett., 12, 1482-1485(2012).

    [14] S. J. Koester, M. Li. High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett., 100, 611(2012).

    [15] K. Kim, J. Y. Choi, T. Kim et al. A role for graphene in silicon-based semiconductor devices. Nature, 479, 338-344(2011).

    [16] Y. T. Hu, M. Pantouvaki, S. Brems et al. Broadband 10 Gb/s graphene electro-absorption modulator on silicon for chip-level optical interconnects, 5.6.1-5.6.4(2014).

    [17] H Dalir, Y Xia, Y Wang et al. Athermal broadband graphene optical modulator with 35 GHz speed. Acs Photonics, 3, 1564-1568(2016).

    [18] H T Lin, Y Song, Y Z Huang et al. Chalcogenide glass-on-graphene photonics, STh4I.5(2017).

    [19] H Q Liu, P G Liu, L A Bian et al. Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack. Opt. Express, 8, 761-774(2018).

    [20] X Hu, J Wang. Design of graphene-based polarizationinsensitive optical modulator. Nanophotonics, 7, 651-658(2018).

    [21] X L Peng, R Hao, Z Ye et al. Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect. Opt. Lett., 42, 1736-1739(2017).

    [22] B B Wang, S Blaize, J B Seok et al. Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics. IEEE J. Sel. Top. Quantum Electron., 25, 4600706(2019).

    [23] X L Peng, R Hao, Z Ye et al. Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect. Opt. Lett., 42, 1736-1739(2017).

    [24] B Huang, W Lu, Z Liu et al. Low-energy high-speed plasmonic enhanced modulator using graphene. Opt. Express, 26, 7358-7367(2018).

    [25] B B Wang, S Blaize, J B Seok et al. Plasmonic-based subwavelength graphene-on-hBN modulator on silicon photonics. IEEE J. Sel. Top. Quantum Electron, 25, 4600706(2019).

    [26] Y Yao, M A Kats, Geneve Pt et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett., 13, 1257-1264(2014).

    [27] J Kim, H Son, D J Cho et al. Electrical control of optical plasmon resonance with graphene. Nano Lett., 12, 5598-5602(2012).

    [28] A Majumdar, J Kim, J Vuckovic et al. Electrical control of silicon photonic crystal cavity by graphene. Nano Lett., 13, 515-518(2013).

    [29] F Wang, Y B Zhang, C S Tian et al. Gate-variable optical transitions in graphene. Science, 320, 206-209(2008).

    [30] R Maiti, S Haldar, D Majumdar et al. Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy. Nanotechnology, 28, 075707(2017).

    [31] J Lee, K S Novoselov, H S Shin. Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano, 5, 608-612(2011).

    [32] S Scher, P Roulleau, F Molito et al. Quantum capacitance and density of states of graphene. Appl. Phys. Lett., 96, 152104(2010).

    [33] F Xia, V Perebeinos, Y M Lin et al. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol, 6, 179-184(2011).

    [34] L Wu, H X Liu, J B Li et al. A 130 GHz electro-optic ring modulator with double-layer graphene. Crystals, 7, 65(2017).

    [35] Z Zhang, J Wang. Long-range hybrid wedge plasmonic waveguide. Scientific Reports, 4, 6870(2014).

    [36] C Gui, J Wang. Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area. Scientific Reports, 5, 11457(2015).

    [37] K Zheng, X Zheng, Q Dai et al. Hybrid rid-slot-rid plasmonic waveguide with deep-subwavelength mode confinement and long propagation length. AIP Adv., 6, 824-830(2016).

    Jia-Bin LI, WANG-Xiao-Hua, Wen-Jie WANG. Mechanism analysis of terahertz graphene electro-optic modulator with plasma structure[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 143
    Download Citation