• Chinese Optics Letters
  • Vol. 21, Issue 2, 021407 (2023)
Kai Yang, Ruiqi Mao, Qiang An, Zhanshan Sun*, and Yunqi Fu**
Author Affiliations
  • College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202321.021407 Cite this Article Set citation alerts
    Kai Yang, Ruiqi Mao, Qiang An, Zhanshan Sun, Yunqi Fu. Laser frequency locking method for Rydberg atomic sensing[J]. Chinese Optics Letters, 2023, 21(2): 021407 Copy Citation Text show less
    References

    [1] J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, J. P. Shaffer. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 8, 819(2012).

    [2] M. Y. Jing, Y. Hu, J. Ma, H. Zhang, L. J. Zhang, L. T. Xiao, S. T. Jia. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys., 16, 911(2020).

    [3] C. L. Holloway, M. T. Simons, M. D. Kautz, A. H. Haddab, J. A. Gordon, T. P. Crowley. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides. Appl. Phys. Lett., 113, 094101(2018).

    [4] M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, G. Raithel. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Appl. Phys. Lett., 108, 174101(2016).

    [5] J. A. Sedlacek, A. Schwettmann, H. Kübler, J. P. Shaffer. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett., 111, 063001(2013).

    [6] M. T. Simons, A. H. Haddab, J. A. Gordon, C. L. Holloway. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave. Appl. Phys. Lett., 114, 114101(2019).

    [7] A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, C. L. Holloway. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor. Appl. Phys. Lett., 118, 114001(2021).

    [8] D. H. Meyer, P. D. Kunz, K. C. Cox. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz. Phys. Rev. Applied, 15, 014053(2021).

    [9] C. L. Holloway, M. T. Simons, J. A. Gordon, D. Novotny. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver. IEEE Antennas and Wireless Propag. Lett., 18, 1853(2019).

    [10] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31, 97(1983).

    [11] E. D. Black. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys., 69, 79(2001).

    [12] S. Hirata, T. Akatsuka, Y. Ohtakem, A. Morinaga. Sub-hertz-linewidth diode laser stabilized to an ultralow-drift high-finesse optical cavity. Appl. Phys. Express, 7, 022705(2014).

    [13] J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, J. P. Shaffer. Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity. Phys. Rev. A, 96, 033813(2017).

    [14] H. M. Wang, Z. S. Xu, S. C. Ma, M. H. Cai, S. H. You, H. P. Liu. Artificial modulation-free Pound–Drever–Hall method for laser frequency stabilization. Opt. Lett., 44, 5816(2019).

    [15] D. A. Smith, I. G. Hughes. The role of hyperfine pumping in multilevel systems exhibiting saturated absorption. Am. J. Phys., 72, 631(2004).

    [16] C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes. Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking. J. Phys. B, 35, 5141(2002).

    [17] M. L. Harris, S. L. Cornish, A. Tripathi, I. G. Hughes. Optimization of sub-Doppler DAVLL on the rubidium D2 line. J. Phys. B, 41, 085401(2008).

    [18] R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, C. S. Adams. Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system. Appl. Phys. Lett., 94, 071107(2009).

    [19] Y. C. Jiao, J. K. Li, L. M. Wang, H. Zhang, L. J. Zhang, J. M. Zhao, S. T. Jia. Laser frequency locking based on Rydberg electromagnetically induced transparency. Chin. Phys. B, 25, 053201(2016).

    [20] F. D. Jia, J. Zhang, L. Zhang, F. Wang, J. Mei, Y. H. Yu, Z. P. Zhong, F. Xie. Frequency stabilization method for transition to a Rydberg state using Zeeman modulation. Appl. Opt., 59, 2108(2020).

    [21] D. W. Allan. Statistics of atomic frequency standards. Proc. IEEE Inst. Electr. Electron Eng., 54, 221(1966).

    [22] K. Yang, Z. S. Sun, R. Q. Mao, Y. Lin, Y. Liu, Q. An, Y. Q. Fu. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication. Chin. Opt. Lett., 20, 081203(2022).

    Data from CrossRef

    [1] Kai Yang, Ruiqi Mao, Qiang An, Jianbing Li, Zhanshan Sun, Yunqi Fu. Amplitude-modulated RF field Rydberg atomic sensor based on homodyne technique. Sensors and Actuators A: Physical, 114167(2023).

    Kai Yang, Ruiqi Mao, Qiang An, Zhanshan Sun, Yunqi Fu. Laser frequency locking method for Rydberg atomic sensing[J]. Chinese Optics Letters, 2023, 21(2): 021407
    Download Citation