• Chinese Optics Letters
  • Vol. 21, Issue 2, 021407 (2023)
Kai Yang, Ruiqi Mao, Qiang An, Zhanshan Sun*, and Yunqi Fu**
Author Affiliations
  • College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202321.021407 Cite this Article Set citation alerts
    Kai Yang, Ruiqi Mao, Qiang An, Zhanshan Sun, Yunqi Fu, "Laser frequency locking method for Rydberg atomic sensing," Chin. Opt. Lett. 21, 021407 (2023) Copy Citation Text show less
    References

    [1] J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, J. P. Shaffer. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 8, 819(2012).

    [2] M. Y. Jing, Y. Hu, J. Ma, H. Zhang, L. J. Zhang, L. T. Xiao, S. T. Jia. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys., 16, 911(2020).

    [3] C. L. Holloway, M. T. Simons, M. D. Kautz, A. H. Haddab, J. A. Gordon, T. P. Crowley. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides. Appl. Phys. Lett., 113, 094101(2018).

    [4] M. T. Simons, J. A. Gordon, C. L. Holloway, D. A. Anderson, S. A. Miller, G. Raithel. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Appl. Phys. Lett., 108, 174101(2016).

    [5] J. A. Sedlacek, A. Schwettmann, H. Kübler, J. P. Shaffer. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett., 111, 063001(2013).

    [6] M. T. Simons, A. H. Haddab, J. A. Gordon, C. L. Holloway. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave. Appl. Phys. Lett., 114, 114101(2019).

    [7] A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, C. L. Holloway. Determining the angle-of-arrival of a radio-frequency source with a Rydberg atom-based sensor. Appl. Phys. Lett., 118, 114001(2021).

    [8] D. H. Meyer, P. D. Kunz, K. C. Cox. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz. Phys. Rev. Applied, 15, 014053(2021).

    [9] C. L. Holloway, M. T. Simons, J. A. Gordon, D. Novotny. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver. IEEE Antennas and Wireless Propag. Lett., 18, 1853(2019).

    [10] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31, 97(1983).

    [11] E. D. Black. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys., 69, 79(2001).

    [12] S. Hirata, T. Akatsuka, Y. Ohtakem, A. Morinaga. Sub-hertz-linewidth diode laser stabilized to an ultralow-drift high-finesse optical cavity. Appl. Phys. Express, 7, 022705(2014).

    [13] J. Sheng, Y. Chao, S. Kumar, H. Fan, J. Sedlacek, J. P. Shaffer. Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity. Phys. Rev. A, 96, 033813(2017).

    [14] H. M. Wang, Z. S. Xu, S. C. Ma, M. H. Cai, S. H. You, H. P. Liu. Artificial modulation-free Pound–Drever–Hall method for laser frequency stabilization. Opt. Lett., 44, 5816(2019).

    [15] D. A. Smith, I. G. Hughes. The role of hyperfine pumping in multilevel systems exhibiting saturated absorption. Am. J. Phys., 72, 631(2004).

    [16] C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, I. G. Hughes. Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking. J. Phys. B, 35, 5141(2002).

    [17] M. L. Harris, S. L. Cornish, A. Tripathi, I. G. Hughes. Optimization of sub-Doppler DAVLL on the rubidium D2 line. J. Phys. B, 41, 085401(2008).

    [18] R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, C. S. Adams. Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system. Appl. Phys. Lett., 94, 071107(2009).

    [19] Y. C. Jiao, J. K. Li, L. M. Wang, H. Zhang, L. J. Zhang, J. M. Zhao, S. T. Jia. Laser frequency locking based on Rydberg electromagnetically induced transparency. Chin. Phys. B, 25, 053201(2016).

    [20] F. D. Jia, J. Zhang, L. Zhang, F. Wang, J. Mei, Y. H. Yu, Z. P. Zhong, F. Xie. Frequency stabilization method for transition to a Rydberg state using Zeeman modulation. Appl. Opt., 59, 2108(2020).

    [21] D. W. Allan. Statistics of atomic frequency standards. Proc. IEEE Inst. Electr. Electron Eng., 54, 221(1966).

    [22] K. Yang, Z. S. Sun, R. Q. Mao, Y. Lin, Y. Liu, Q. An, Y. Q. Fu. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication. Chin. Opt. Lett., 20, 081203(2022).

    Data from CrossRef

    [1] Kai Yang, Ruiqi Mao, Qiang An, Jianbing Li, Zhanshan Sun, Yunqi Fu. Amplitude-modulated RF field Rydberg atomic sensor based on homodyne technique. Sensors and Actuators A: Physical, 114167(2023).

    Kai Yang, Ruiqi Mao, Qiang An, Zhanshan Sun, Yunqi Fu, "Laser frequency locking method for Rydberg atomic sensing," Chin. Opt. Lett. 21, 021407 (2023)
    Download Citation