• Laser & Optoelectronics Progress
  • Vol. 58, Issue 3, 3230021 (2021)
Wu Rong, Li Longfei*, and Ma Yanyan
Author Affiliations
  • School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou , Gansu 730070, China
  • show less
    DOI: 10.3788/LOP202158.0323002 Cite this Article Set citation alerts
    Wu Rong, Li Longfei, Ma Yanyan. Research and Design of Six-Channel Photonic Crystal Wavelength Division Multiplexer[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3230021 Copy Citation Text show less
    Fig.‍ ‍1 Change of the band gap range with the radius of the dielectric cylinder
    Fig. 1. Fig.‍ ‍1 Change of the band gap range with the radius of the dielectric cylinder
    Fig.‍ ‍2 Band structure of the complete two-dimensional photonic crystal
    Fig. 2. Fig.‍ ‍2 Band structure of the complete two-dimensional photonic crystal
    Principle of the resonant coupling unit
    Fig. 3. Principle of the resonant coupling unit
    Transmittance distribution at the output
    Fig. 4. Transmittance distribution at the output
    Influence of the radius of the dielectric cylinder in the microcavity on the transmittance
    Fig. 5. Influence of the radius of the dielectric cylinder in the microcavity on the transmittance
    Influence of the radius of the medium cylinder outside the microcavity on the transmittance
    Fig. 6. Influence of the radius of the medium cylinder outside the microcavity on the transmittance
    Influence of the radius of the dielectric cylinder at the output end on the transmittance
    Fig. 7. Influence of the radius of the dielectric cylinder at the output end on the transmittance
    Schematic diagram of the six-channel wavelength division multiplexer
    Fig. 8. Schematic diagram of the six-channel wavelength division multiplexer
    Transmittance distribution diagram of the six-channel wavelength division multiplexer
    Fig. 9. Transmittance distribution diagram of the six-channel wavelength division multiplexer
    Field distribution diagram of the wavelength division multiplexer under the corresponding wavelength excitation source. (a) 1.3298 μm; (b) 1.4316 μm; (c) 1.4419 μm; (d) 1.5564 μm; (e) 1.5966 μm; (f) 1.6191 μm
    Fig. 10. Field distribution diagram of the wavelength division multiplexer under the corresponding wavelength excitation source. (a) 1.3298 μm; (b) 1.4316 μm; (c) 1.4419 μm; (d) 1.5564 μm; (e) 1.5966 μm; (f) 1.6191 μm
    OutputCentral wavelength/μmTransmittance/%Bandwith/nmRo/μmRw/μmRe/μmRF/μmRL/μm
    CH11.329892.56.70.10180.1400--0.234
    CH21.441991.97.30.04660.1700--0.230
    CH31.596699.411.80.05050.1018--0.179
    CH41.619199.011.20.05660.0970--0.162
    CH51.556490.59.30.04590.1018-0.1810.144
    CH61.431692.48.70.13700.11750.1540.0050.136
    Table 1. Parameters of six-channel wavelength division multiplexer
    CrosstalkCH1CH2CH3CH4CH5CH6
    CH1--26.2-49.9-59.0-28.4-30.8
    CH2-37.4--41.6-38.8-34.9-21.6
    CH3-49.7-23.4--29.8-14.2-35.0
    CH4-46.2-18.8-22.7--13.1-35.7
    CH5-32.6-16.6-17.6-26.0--31.2
    CH6-29.4-14.1-18.2-20.9-23.5-
    Table 2. Crosstalk between channels
    ReferenceFrequency selection structureChannelsTransmission/%Crosstalk/dBFootprint/(μm×μm)
    Ref.[6]radius of ring cavity and micro cavity897.0-27.023×18
    Ref.[9]coupling length390.0-15.037×13
    Ref.[10]ring cavity dielectric column material898.0-1.5-
    Ref.[11]radius of micro cavity dielectric column485.6-11×14
    Ref.[12]radius of ring cavity dielectric column390.0-14.0-
    Oursradius of ring cavity and micro cavity690.5-13.113.4×17.6
    Table 3. Comparison of different schemes
    Wu Rong, Li Longfei, Ma Yanyan. Research and Design of Six-Channel Photonic Crystal Wavelength Division Multiplexer[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3230021
    Download Citation