• Acta Optica Sinica
  • Vol. 39, Issue 6, 0623003 (2019)
Xiaowei Jiang1、2、*
Author Affiliations
  • 1 College of Information Engineering, Quzhou College of Technology, Quzhou, Zhejiang 324000, China
  • 2 Key Laboratory of Optoelectronic Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/AOS201939.0623003 Cite this Article Set citation alerts
    Xiaowei Jiang. Polarization-Independent Wavelength-Tunable Vertical Cavity Surface Emitting Laser Based on Two-Dimensional Grating[J]. Acta Optica Sinica, 2019, 39(6): 0623003 Copy Citation Text show less
    References

    [1] Al-Samaneh A, Bou Sanayeh M, Renz S et al. Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications[J]. IEEE Photonics Technology Letters, 23, 1049-1051(2011).

         Al-Samaneh A, Bou Sanayeh M, Renz S et al. Polarization control and dynamic properties of VCSELs for MEMS atomic clock applications[J]. IEEE Photonics Technology Letters, 23, 1049-1051(2011).

    [2] Gruet F, Al-Samaneh A, Kroemer E et al. Metrological characterization of custom-designed 8946 nm VCSELs for miniature atomic clocks[J]. Optics Express, 21, 5781-5792(2013).

         Gruet F, Al-Samaneh A, Kroemer E et al. Metrological characterization of custom-designed 8946 nm VCSELs for miniature atomic clocks[J]. Optics Express, 21, 5781-5792(2013).

    [3] Parekh D, Zhang B, Zhao X X et al. Long distance single-mode fiber transmission of multimode VCSELs by injection locking[J]. Optics Express, 18, 20552-20557(2010). http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-20-20552

         Parekh D, Zhang B, Zhao X X et al. Long distance single-mode fiber transmission of multimode VCSELs by injection locking[J]. Optics Express, 18, 20552-20557(2010). http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-20-20552

    [4] Xie Y Y, Li J C, He C et al. Long-distance multi-channel bidirectional chaos communication based on synchronized VCSELs subject to chaotic signal injection[J]. Optics Communications, 377, 1-9(2016). http://www.sciencedirect.com/science/article/pii/S0030401816303558

         Xie Y Y, Li J C, He C et al. Long-distance multi-channel bidirectional chaos communication based on synchronized VCSELs subject to chaotic signal injection[J]. Optics Communications, 377, 1-9(2016). http://www.sciencedirect.com/science/article/pii/S0030401816303558

    [5] Ouvrard A, Garnac A, Cerutti L et al. Single-frequency tunable Sb-based VCSELs emitting at 2.3 μm[J]. IEEE Photonics Technology Letters, 17, 2020-2022(2005). http://ieeexplore.ieee.org/document/1512259

         Ouvrard A, Garnac A, Cerutti L et al. Single-frequency tunable Sb-based VCSELs emitting at 2.3 μm[J]. IEEE Photonics Technology Letters, 17, 2020-2022(2005). http://ieeexplore.ieee.org/document/1512259

    [6] Zappe H P, Hess M, Moser M et al. Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection[J]. Applied Optics, 39, 2475-2479(2000). http://europepmc.org/abstract/MED/18345162

         Zappe H P, Hess M, Moser M et al. Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection[J]. Applied Optics, 39, 2475-2479(2000). http://europepmc.org/abstract/MED/18345162

    [7] Xie Y Y, Kan Q, Xu C et al. Single fundamental mode photonic crystal VCSEL with high power and low threshold current optimized by modal loss analysis[J]. Chinese Physics B, 26, 014203(2017). http://www.cqvip.com/QK/85823A/20171/671189365.html

         Xie Y Y, Kan Q, Xu C et al. Single fundamental mode photonic crystal VCSEL with high power and low threshold current optimized by modal loss analysis[J]. Chinese Physics B, 26, 014203(2017). http://www.cqvip.com/QK/85823A/20171/671189365.html

    [8] Chung I S. Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs[J]. Optics Express, 23, 16730-16739(2015). http://www.ncbi.nlm.nih.gov/pubmed/26191685

         Chung I S. Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs[J]. Optics Express, 23, 16730-16739(2015). http://www.ncbi.nlm.nih.gov/pubmed/26191685

    [9] Zhang X W, Ning Y Q, Qin L et al. Study of oxide-grating vertical-cavity surface-emitting lasers[J]. Chinese Journal of Luminescence, 34, 1517-1520(2013).

         Zhang X W, Ning Y Q, Qin L et al. Study of oxide-grating vertical-cavity surface-emitting lasers[J]. Chinese Journal of Luminescence, 34, 1517-1520(2013).

    [10] Berseth C A, Dwir B, Utke I et al. Control of VCSEL polarization in arbitrary direction using metal gratings made by electron beam lithography. [C]//Conference on Lasers and Electro-Optics (IEEE Cat. No. 99CH37013), May 28-28, 1999, Baltimore, MD, USA. New York: IEEE, 483(1999).

         Berseth C A, Dwir B, Utke I et al. Control of VCSEL polarization in arbitrary direction using metal gratings made by electron beam lithography. [C]//Conference on Lasers and Electro-Optics (IEEE Cat. No. 99CH37013), May 28-28, 1999, Baltimore, MD, USA. New York: IEEE, 483(1999).

    [11] Onishi T, Tanigawa T, Ueda T et al. Polarization control of vertical-cavity surface-emitting lasers by utilizing surface plasmon resonance[J]. IEEE Journal of Quantum Electronics, 43, 1123-1128(2007). http://ieeexplore.ieee.org/document/4376272/

         Onishi T, Tanigawa T, Ueda T et al. Polarization control of vertical-cavity surface-emitting lasers by utilizing surface plasmon resonance[J]. IEEE Journal of Quantum Electronics, 43, 1123-1128(2007). http://ieeexplore.ieee.org/document/4376272/

    [12] Panajotov K, Dems M, Belmonte C et al. VCSELs with nematic and cholesteric liquid crystal overlays[J]. Proceedings of SPIE, 8639, 86390A(2013). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2003937

         Panajotov K, Dems M, Belmonte C et al. VCSELs with nematic and cholesteric liquid crystal overlays[J]. Proceedings of SPIE, 8639, 86390A(2013). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2003937

    [13] Wang H Y, Cheng Z, Zhao X X et al. Polarization controlling of vertical cavity surface emitting laser with cholesteric liquid crystal overlay[J]. Laser & Optoelectronics Progress, 51, 111402(2014).

         Wang H Y, Cheng Z, Zhao X X et al. Polarization controlling of vertical cavity surface emitting laser with cholesteric liquid crystal overlay[J]. Laser & Optoelectronics Progress, 51, 111402(2014).

    [14] Xie Y, Beeckman J, Panajotov K et al. Vertical-cavity surface-emitting laser with a chiral nematic liquid crystal overlay[J]. IEEE Photonics Journal, 6, 1500010(2014). http://ieeexplore.ieee.org/document/6680653/

         Xie Y, Beeckman J, Panajotov K et al. Vertical-cavity surface-emitting laser with a chiral nematic liquid crystal overlay[J]. IEEE Photonics Journal, 6, 1500010(2014). http://ieeexplore.ieee.org/document/6680653/

    [15] Ikeda K, Takeuchi K, Takayose K et al. Polarization-independent high-index contrast grating and its fabrication tolerances[J]. Applied Optics, 52, 1049-1053(2013).

         Ikeda K, Takeuchi K, Takayose K et al. Polarization-independent high-index contrast grating and its fabrication tolerances[J]. Applied Optics, 52, 1049-1053(2013).

    [16] Katayama T, Ito J, Kawaguchi H. Polarization-dependent coupling between a polarization-independent high-index-contrast subwavelength grating and waveguides[J]. Applied Physics Express, 9, 072703(2016).

         Katayama T, Ito J, Kawaguchi H. Polarization-dependent coupling between a polarization-independent high-index-contrast subwavelength grating and waveguides[J]. Applied Physics Express, 9, 072703(2016).

    [17] Albert J, Soriano M C, Veretennicoff I et al. Laser Doppler velocimetry with polarization-bistable VCSELs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 1006-1012(2004). http://ieeexplore.ieee.org/document/1366373/

         Albert J, Soriano M C, Veretennicoff I et al. Laser Doppler velocimetry with polarization-bistable VCSELs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 1006-1012(2004). http://ieeexplore.ieee.org/document/1366373/

    [18] Dyomina I O, Dyomin A A, Sukhoivanov I A et al. Polarization-independent microcavity with two phase layers. [C]//2006 International Workshop on Laser and Fiber-Optical Networks Modeling, June 29-July 1, 2006, Kharkiv, Ukraine. New York: IEEE, 497-498(2006).

         Dyomina I O, Dyomin A A, Sukhoivanov I A et al. Polarization-independent microcavity with two phase layers. [C]//2006 International Workshop on Laser and Fiber-Optical Networks Modeling, June 29-July 1, 2006, Kharkiv, Ukraine. New York: IEEE, 497-498(2006).

    [19] Tsunemi Y, Yokota N, Majima S et al. 1.55-μm VCSEL with polarization-independent HCG mirror on SOI[J]. Optics Express, 21, 28685-28692(2013).

         Tsunemi Y, Yokota N, Majima S et al. 1.55-μm VCSEL with polarization-independent HCG mirror on SOI[J]. Optics Express, 21, 28685-28692(2013).

    [20] Jahns J J, Wyrowski F. Diffractive optics for industrial and commercial applications[M]. Berlin, Germany: Akademie Verlag, 15-20(1997).

         Jahns J J, Wyrowski F. Diffractive optics for industrial and commercial applications[M]. Berlin, Germany: Akademie Verlag, 15-20(1997).

    [21] Qiao P F, Li K, Cook K T et al. MEMS-tunable VCSELs using 2D high-contrast gratings[J]. Optics Letters, 42, 823-826(2017). http://europepmc.org/abstract/MED/28198874

         Qiao P F, Li K, Cook K T et al. MEMS-tunable VCSELs using 2D high-contrast gratings[J]. Optics Letters, 42, 823-826(2017). http://europepmc.org/abstract/MED/28198874

    [22] Bekele D A, Park G C, Malureanu R et al. Polarization-independent wideband high-index-contrast grating mirror[J]. IEEE Photonics Technology Letters, 27, 1733-1736(2015). http://ieeexplore.ieee.org/document/7113804/

         Bekele D A, Park G C, Malureanu R et al. Polarization-independent wideband high-index-contrast grating mirror[J]. IEEE Photonics Technology Letters, 27, 1733-1736(2015). http://ieeexplore.ieee.org/document/7113804/

    [23] Zimin Y, Ueda T. Low-temperature anodic bonding of silicon and crystal quartz wafers for MEMS application. [C]//Sensors, 2010 IEEE, November 1-4, 2010, Kona, HI, USA. New York: IEEE, 269-272(2010).

         Zimin Y, Ueda T. Low-temperature anodic bonding of silicon and crystal quartz wafers for MEMS application. [C]//Sensors, 2010 IEEE, November 1-4, 2010, Kona, HI, USA. New York: IEEE, 269-272(2010).

    [24] Qiao P F, Su G L, Rao Y et al. Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs[J]. Optics Express, 22, 8541-8555(2014). http://europepmc.org/abstract/med/24718226

         Qiao P F, Su G L, Rao Y et al. Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs[J]. Optics Express, 22, 8541-8555(2014). http://europepmc.org/abstract/med/24718226

    [25] Guan B L, Guo X, Yang H et al. Investigation and design of widely tunable vertical-cavity surface emitting lasers[J]. Acta Physica Sinica, 56, 4585-4589(2007).

         Guan B L, Guo X, Yang H et al. Investigation and design of widely tunable vertical-cavity surface emitting lasers[J]. Acta Physica Sinica, 56, 4585-4589(2007).

    Xiaowei Jiang. Polarization-Independent Wavelength-Tunable Vertical Cavity Surface Emitting Laser Based on Two-Dimensional Grating[J]. Acta Optica Sinica, 2019, 39(6): 0623003
    Download Citation