[1] 1李相迪, 黄英, 张培晴, 等. 红外成像系统及其应用[J]. 激光与红外, 2014, 44(3): 229-234. doi: 10.3969/j.issn.1001-5078.2014.03.01LIX D, HUANGY, ZHANGP Q, et al. Infrared imaging system and applications[J]. Laser & Infrared, 2014, 44(3): 229-234.(in Chinese). doi: 10.3969/j.issn.1001-5078.2014.03.01
[2] 2范晋祥, 杨建宇. 红外成像探测技术发展趋势分析[J]. 红外与激光工程, 2012, 41(12): 3145-3153. doi: 10.3969/j.issn.1007-2276.2012.12.003FANJ X, YANGJ Y. Development trends of infrared imaging detecting technology[J]. Infrared and Laser Engineering, 2012, 41(12): 3145-3153.(in Chinese). doi: 10.3969/j.issn.1007-2276.2012.12.003
[3] N F YU, P GENEVET, M A KATS et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).
[4] Y Q HU, X D WANG, X H LUO et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics, 9, 3755-3780(2020).
[5] S M KAMALI, E ARBABI, A ARBABI et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).
[6] H H HSIAO, C H CHU, D P TSAI. Metasurfaces: fundamentals and applications of metasurfaces (small methods 4/2017). Small Methods, 1, 1600064(2017).
[7] S BANERJI, M MEEM, A MAJUMDER et al. Imaging with flat optics: metalenses or diffractive lenses?. Optica, 6, 805(2019).
[8] P LALANNE, P CHAVEL. Metalenses at visible wavelengths: past, present, perspectives. Laser & Photonics Reviews, 11, 1600295(2017).
[9] M KHORASANINEJAD, F CAPASSO. Metalenses: versatile multifunctional photonic components. Science, 358(2017).
[10] M KHORASANINEJAD, W T CHEN, R C DEVLIN et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).
[11] M KHORASANINEJAD, A Y ZHU, C ROQUES-CARMES et al. Polarization-insensitive metalenses at visible wavelengths. Nano Letters, 16, 7229-7234(2016).
[12] A ARBABI, Y HORIE, A J BALL et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 6, 7069(2015).
[13] G YOON, K KIM, S U KIM et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 15, 698-706(2021).
[14] G T CAO, H X XU, L M ZHOU et al. Infrared metasurface-enabled compact polarization nanodevices. Materials Today, 50, 499-515(2021).
[15] B H CHEN, P C WU, V C SU et al. GaN metalens for pixel-level full-color routing at visible light. Nano Letters, 17, 6345-6352(2017).
[16] S M WANG, P C WU, V C SU et al. A broadband achromatic metalens in the visible. Nature Nanotechnology, 13, 227-232(2018).
[17] M KHORASANINEJAD, W T CHEN, A Y ZHU et al. Multispectral chiral imaging with a metalens. Nano Letters, 16, 4595-4600(2016).
[18] J S PARK, S Y ZHANG, A L SHE et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Letters, 19, 8673-8682(2019).
[19] Y ZOU, S CHAKRAVARTY, C J CHUNG et al. Mid-infrared silicon photonic waveguides and devices. Photonics Research, 6, 254-276(2018).
[20] T HU, B W DONG, X S LUO et al. Silicon photonic platforms for mid-infrared applications. Photonics Research, 5, 417-430(2017).
[21] G Z MASHANOVICH, C J MITCHELL, J S PENADES et al. Germanium mid-infrared photonic devices. Journal of Lightwave Technology, 35, 624-630(2017).
[22] R SOREF. Mid-infrared photonics in silicon and germanium. Nature Photonics, 4, 495-497(2010).
[23] 23张龙, 陈雷, 范有余, 等. 中红外玻璃材料发展及前沿应用[J]. 光学学报, 2011, 31(9): 296-304. doi: 10.3788/AOS201131.0900134ZHANGL, CHENL, FANY Y, et al. Development of mid-infrared transmitting glasses window and applications[J]. Acta Optica Sinica, 2011, 31(9): 296-304.(in Chinese). doi: 10.3788/AOS201131.0900134
[24] C LECAPLAIN, C JAVERZAC-GALY, M L GORODETSKY et al. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials. Nature Communications, 7, 13383(2016).
[25] 25刘逸天, 陈琦凯, 唐志远, 等. 超表面透镜的像差分析和成像技术研究[J]. 中国光学, 2021, 14(4): 831-850. doi: 10.37188/CO.2021-0014LIUY T, CHENQ K, TANGZH Y, et al. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 2021, 14(4): 831-850.(in Chinese). doi: 10.37188/CO.2021-0014
[26] B GROEVER, W T CHEN, F CAPASSO. Meta-lens doublet in the visible region. Nano Letters, 17, 4902-4907(2017).
[27] A L SHE, S Y ZHANG, S SHIAN et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Science Advances, 4(2018).
[28] X Z CHEN, L L HUANG, H MÜHLENBERND et al. Dual-polarity plasmonic metalens for visible light. Nature Communications, 3, 1198(2012).
[29] X J NI, S ISHII, A V KILDISHEV et al. Ultra-thin, planar, babinet-inverted plasmonic metalenses. Light: Science & Applications, 2(2013).
[30] C PFEIFFER, A GRBIC. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 110, 197401(2013).
[31] Y F YU, A Y ZHU, R PANIAGUA-DOMÍNGUEZ et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser & Photonics Reviews, 9, 412-418(2015).
[32] M DECKER, I STAUDE, M FALKNER et al. High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials, 3, 813-820(2015).
[33] A ARBABI, R M BRIGGS, Y HORIE et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Optics Express, 23, 33310-33317(2015).
[34] S PANCHARATNAM. Generalized theory of interference and its applications. Proceedings of the Indian Academy of Sciences-Section A, 44, 398-417(1956).
[35] S Y ZHANG, M H KIM, F AIETA et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. 2016 Conference on Lasers and Electro-Optics (CLEO), 1-2(2016).
[36] H J ZUO, D CHOI, X GAI et al. High‐efficiency all‐dielectric metalenses for mid‐infrared imaging. Advanced Optical Materials, 5, 1700585(2017).
[37] A LEITIS, M L TSENG, A JOHN-HERPIN et al. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Advanced Materials (Deerfield Beach, Fla), 33(2021).
[38] L ZHANG, J DING, H Y ZHENG et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 9, 1481(2018).
[39] Q B FAN, Y L WANG, M Z LIU et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Optics Letters, 43, 6005-6008(2018).
[40] S Y ZHANG, A SOIBEL, S A KEO et al. Solid-immersion metalenses for infrared focal plane arrays. Applied Physics Letters, 113, 111104(2018).
[41] F AIETA, M A KATS, P GENEVET et al. Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).
[42] Y ZHOU, I I KRAVCHENKO, H WANG et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Letters, 18, 7529-7537(2018).
[43] O AVAYU, E ALMEIDA, Y PRIOR et al. Composite functional metasurfaces for multispectral achromatic optics. Nature Communications, 8, 14992(2017).
[44] S M WANG, P C WU, V C SU et al. Broadband achromatic optical metasurface devices. Nature Communications, 8, 187-189(2017).
[45] W T CHEN, A Y ZHU, V SANJEEV et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 13, 220-226(2018).
[46] W T CHEN, A Y ZHU, J SISLER et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 10, 355(2019).
[47] H P ZHOU, L CHEN, F SHEN et al. Broadband achromatic metalens in the midinfrared range. Physical Review Applied, 11(2019).
[48] F L YU, G H LI et al. Broadband achromatic metalens in mid-wavelength infrared. Laser & Photonics Reviews, 15, 2100020(2021).
[49] N T SONG, N X XU, D Z SHAN et al. Broadband achromatic metasurfaces for longwave infrared applications. Nanomaterials (Basel, Switzerland), 11, 2760(2021).
[50] W H XIONG, C C SHA, J P DING. Polarization-independent broadband achromatic metalens in the mid-infrared (3-5 μm) region. Applied Physics Express, 15(2022).
[51] A KALVACH, Z SZABÓ. Aberration-free flat lens design for a wide range of incident angles. Journal of the Optical Society of America B, 33, A66-A71(2016).
[52] F AIETA, P GENEVET, M KATS et al. Aberrations of flat lenses and aplanatic metasurfaces. Optics Express, 21, 31530-31539(2013).
[53] X G LUO, F ZHANG, M B PU et al. Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics, 11, 1-20(2021).
[54] F AIETA, P GENEVET, M A KATS et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters, 12, 4932-4936(2012).
[55] D A BURALLI, G M MORRIS. Design of a wide field diffractive landscape lens. Applied Optics, 28, 3950-3959(1989).
[56] A ARBABI, E ARBABI, S M KAMALI et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nature Communications, 7, 13682(2016).
[57] A MARTINS, K Z LI, J T LI et al. On metalenses with arbitrarily wide field of view. ACS Photonics, 7, 2073-2079(2020).
[58] M B PU, X LI, Y H GUO et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Optics Express, 25, 31471-31477(2017).
[59] M Y SHALAGINOV, S S AN, F YANG et al. Single-element diffraction-limited fisheye metalens. Nano Letters, 20, 7429-7437(2020).
[60] J Engelberg, C Zhou, N Mazurski et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics, 9, 361-370(2020).
[61] E H LINFOOT, E WOLF. On the corrector plates of Schmidt cameras. Journal of the Optical Society of America, 39, 752(1949).
[62] 62黄振宇. 大视场宽波段成像超透镜的研究[D]. 成都: 电子科技大学, 2021.HUANGZH Y. Research on Imaging Metalens with Wide Bandwidth and Large Viewing Field[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese)
[63] F ZHANG, M B PU, X LI et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Advanced Materials (Deerfield Beach, Fla), 33(2021).
[64] N M GARCIA, I DE ERAUSQUIN, C EDMISTON et al. Surface normal reconstruction using circularly polarized light. Optics Express, 23, 14391-14406(2015).
[65] D L COFFEEN. Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter. Journal of the Optical Society of America, 69, 1051-1064(1979).
[66] J S TYO, D L GOLDSTEIN, D B CHENAULT et al. Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45, 5453-5469(2006).
[67] E ARBABI, S M KAMALI, A ARBABI et al. Full-stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics, 5, 3132-3140(2018).
[68] S W WEI, Z Y YANG, M ZHAO. Design of ultracompact polarimeters based on dielectric metasurfaces. Optics Letters, 42, 1580-1583(2017).
[69] Z Y YANG, Z K WANG, Y X WANG et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nature Communications, 9, 4607(2018).
[70] X S LI, H WANG, X M XU et al. Mid-infrared full-Stokes polarization detection based on dielectric metasurfaces. Optics Communications, 484, 126690(2021).
[71] C YAN, X LI, M B PU et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Applied Physics Letters, 114, 161904(2019).
[72] F L YU, G H LI et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 6(2020).
[73] C HE, T SUN, J J GUO et al. Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region. Advanced Optical Materials, 7, 1901129(2019).
[74] A NEMATI, Q WANG, M H HONG et al. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electronic Advances, 1, 18000901-18000925(2018).
[75] T ROY, S Y ZHANG, I W JUNG et al. Dynamic metasurface lens based on MEMS technology. APL Photonics, 3(2018).
[76] E ARBABI, A ARBABI, S M KAMALI et al. MEMS-tunable dielectric metasurface lens. MEMS-tunable dielectric metasurface lens[, 9, 812(2018).
[77] T CUI, B F BAI, H B SUN. Tunable metasurfaces based on active materials. Advanced Functional Materials, 29, 1806692(2019).
[78] Y Q HU, X N OU, T B ZENG et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Letters, 21, 4554-4562(2021).
[79] Q WANG, E T F ROGERS, B GHOLIPOUR et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 10, 60-65(2016).
[80] K GUO, X Y LI, H F AI et al. Tunable oriented mid-infrared wave based on metasurface with phase change material of GST. Results in Physics, 34, 105269(2022).
[81] M Y SHALAGINOV, S S AN, Y F ZHANG et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 12, 1225(2021).
[82] J W XU, X M TIAN, Z Y LI et al. Ge2Sb2Se4Te1-based spin-decoupled metasurface for multidimensional and switchable focusing in the mid-infrared regime. Optical Materials Express, 12, 918(2022).
[83] Y K CHEN, S L PU, C Z WANG et al. Voltage tunable mid-wave infrared reflective varifocal metalens via an optomechanic cavity. Optics Letters, 46, 1930-1933(2021).
[84] C L BOGH, A J MUHOWSKI, D A MONTEALEGRE et al. Over three hundred percent increased light extraction from emitters at mid-infrared wavelengths using metalenses. ACS Applied Electronic Materials, 2, 2638-2643(2020).
[85] H W HOU, Y Y ZHANG, Z D LUO et al. Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors. Optics and Lasers in Engineering, 150, 106849(2022).
[86] K S ZHOU, B X WANG, S W TANG et al. Mid-infrared biomimetic moth-eye-shaped polarization-maintaining and angle-insensitive metalens. Optics Express, 30, 12048-12060(2022).
[87] F ZHAO, R S LU, X N CHEN et al. Metalens‐assisted system for underwater imaging. Laser & Photonics Reviews, 15, 2100097(2021).
[88] Q GUO, Z J SHI, Y W HUANG et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proceedings of the National Academy of Sciences of the United States of America, 116, 22959-22965(2019).
[89] M PAHLEVANINEZHAD, Y W HUANG, M PAHLEVANI et al. Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. Nature Photonics, 16, 203-211(2022).
[90] C CHEN, W G SONG, J W CHEN et al. Spectral tomographic imaging with aplanatic metalens. Light: Science & Applications, 8, 99(2019).
[91] Q B FAN, W Z XU, X M HU et al. Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nature Communications, 13, 2130(2022).
[92] R J LIN, V C SU, S M WANG et al. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 14, 227-231(2019).
[93] A L SHE, S Y ZHANG, S SHIAN et al. Large area metalenses: design, characterization, and mass manufacturing. Optics Express, 26, 1573-1585(2018).
[94] T PHAN, D SELL, E W WANG et al. High-efficiency, large-area, topology-optimized metasurfaces. Light: Science & Applications, 8, 48(2019).
[95] M F IMANI, J N GOLLUB, O YURDUSEVEN et al. Review of metasurface antennas for computational microwave imaging. IEEE Transactions on Antennas and Propagation, 68, 1860-1875(2020).
[96] S COLBURN, A L ZHAN, A MAJUMDAR. Metasurface optics for full-color computational imaging. Science Advances, 4(2018).
[97] S D CAMPBELL, D SELL, R P JENKINS et al. Review of numerical optimization techniques for meta-device design [Invited]. Optical Materials Express, 9, 1842(2019).
[98] S MOLESKY, Z LIN, A Y PIGGOTT et al. Inverse design in nanophotonics. Nature Photonics, 12, 659-670(2018).
[99] Z W JIN, S T MEI, S Q CHEN et al. Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithm. ACS Nano, 13, 821-829(2019).
[100] S JAFAR-ZANJANI, S INAMPUDI, H MOSALLAEI. Adaptive genetic algorithm for optical metasurfaces design. Scientific Reports, 8, 11040(2018).
[101] Z Y LI, R PESTOURIE, J S PARK et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nature Communications, 13, 2409(2022).
[102] J PARK, S KIM, D W NAM et al. Free-form optimization of nanophotonic devices: from classical methods to deep learning. Nanophotonics, 11, 1809-1845(2022).
[103] M V ZHELYEZNYAKOV, S BRUNTON, A MAJUMDAR. Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces. ACS Photonics, 8, 481-488(2021).
[104] 104胡跃强, 李鑫, 王旭东, 等. 光学超构表面的微纳加工技术研究进展[J]. 红外与激光工程, 2020, 49(9): 96-114. doi: 10.3788/IRLA20201035HUY Q, LIX, WANGX D, et al. Progress of micro-nano fabrication technologies for optical metasurfaces[J]. Infrared and Laser Engineering, 2020, 49(9): 96-114.(in Chinese). doi: 10.3788/IRLA20201035