• Chinese Journal of Quantum Electronics
  • Vol. 31, Issue 4, 459 (2014)
Jun LIU1、2、*, Ping DONG1、2, Wei SONG1, and Zhuo-liang CAO1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2014.04.010 Cite this Article
    LIU Jun, DONG Ping, SONG Wei, CAO Zhuo-liang. Implementation of quantum error-correction code via spin-photon interactions[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 459 Copy Citation Text show less
    References

    [1] Lidar D A,Chuang I L, Whaley K B. Decoherence-free subspaces for quantum computation [J]. Phys. Rev. Lett., 1998, 81: 2594-2597.

    [2] Shor P W. Scheme for reducing decoherence in quantum computer memory [J]. Phys. Rev. A, 1995, 52: 2493-2496.

    [3] Calderbank A R, Shor P W. Good quantum error-correcting codes exist [J]. Phys. Rev. A, 1996, 54: 1098-1105.

    [4] Steane A M. Error correcting codes in quantum theory [J]. Phys. Rev. Lett., 1996, 77: 793-797.

    [5] Cleve R. Quantum stabilizer codes and classical linear codes [J]. Phys. Rev. A, 1997, 55: 4054-4059.

    [6] Cleve R, Gottesman D. Efficient computations of encodings for quantum error correction [J]. Phys. Rev. A, 1997, 56: 76-82.

    [7] Wu C H, Tsai Y C, Tsai H L. Quantum circuits for stabilizer codes [J]. IEEE International Symposium on Circuits and Systems, 2005, 3: 2333.

    [8] Ketkar A, Klappenecker A, Kumar S, et al. Nonbinary stabilizer codes over finite fields [J]. IEEE Transaction on Information Theory, 2006, 52: 4892.

    [9] Hu C Y, Munro W J, O’Brien J L, et al. Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity [J]. Phys. Rev. B, 2009, 80: 205326.

    [10] Hu C Y, Young A, O’Brien J L, et al. Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon [J]. Phys. Rev. B, 2008, 78: 085307.

    [11] Ottaviani C, et al. Implementation of a three-qubit quantum error-correction code in a cavity-QED setup [J]. Phys. Rev. A, 2010, 82: 012319.

    [12] Zhang J, Gangloff D, Moussa O, et al. Experimental quantum error correction with high fidelity [J]. Phys. Rev. A, 2011, 84: 034303.

    [13] Moussa O, Baugh J, Ryan C A, et al. Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor [J]. Phys. Rev. Lett., 2011, 107: 160501.

    [14] Pelton M, Santori C, Vuckovic J, et al. Efficient source of single photons: A single quantum dot in a micropost microcavity [J]. Phys. Rev. Lett., 2002, 89: 233602.

    [15] Moreau E, Robert I, Grard J M, et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities [J]. Phys. Lett., 2001, 79: 2865.

    [16] Imamoglu A, Awschalom D D, Burkard G, et al. Quantum information processing using quantum dot spins and cavity QED [J]. Phys. Rev. Lett., 1999, 83: 4204-4207.

    [17] Dong P, Cao Z L. Quantum computation with quantum-dot spin qubits inside a cavity [J]. Phys. Lett. A, 2009, 373: 1527.

    [18] Liu Y X, Miranowicz A, Koashi M, et al. Realization of symmetric sharing of entanglement in semiconductor microcrystallites coupled by a cavity field [J]. Phys. Rev. A, 2002, 66: 062309.

    [19] Yuan C H, Zhu K D, Yuan X Z. Exciton entanglement in coupled quantum dots in a microcavity [J]. Phys. Rev. A, 2007, 75: 062309.

    [20] Wang T J, Song S Y, Long G L. Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities [J]. Phys. Rev. A, 2012, 85: 062311.

    [21] Petta J R, Johnson A C, et al. Preparing, manipulating, and measuring quantum states on a chip [J]. Science, 2005, 309: 2180.

    [22] Wu Y, Payne M G, Hagley E W, et al. Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing [J]. Phys. Rev. A, 2004, 69: 063803.

    [23] Atat ure M, Dreiser J, Badolato A, et al. Observation of Faraday rotation from a single confined spin [J]. Nature Phys., 2007, 1: 101.

    [24] Berezovsky J, Mikkelsen M H, Stoltz O G, et al. Symposium GG: Excitons and plasmon resonances in nanostructures [J]. Science, 2006, 314: 1916.

    [25] Nielsen M, Chuang I. Quantum computation and quantum information [M]. Cambridge Universtiy, 2000.

    [26] Warburton R J, D urr C S, Karrai K, et al. Charged excitons in self-assembled semiconductor quantum dots [J]. Phys. Rev. Lett., 1997, 79: 5282-5285.

    [27] Press D, Ladd T D, Zhang B, et al. Complete quantum control of a single quantum dot spin using ultrafast optical pulses [J]. Nature, 2008, 456: 218.

    [28] Atat ure M, Dreiser J, Badolato A, et al. Laser cooling can reduce the temperature of a single electron trapped in a quantum dot [J]. Science, 2006, 312: 551.

    [29] Hu X, Wu Y, Sun B, et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling [J]. Phys. Rev. Lett., 2007, 99: 097401.

    [30] Pelton M, Santori C, Vu ckovi’c J, et al. Efficient source of single photons: A single quantum dot in a micropost microcavity [J]. Phys. Rev. Lett., 2002, 89: 233602.

    [31] Reitzenstein S, Hofmann C, Gorbunov A, et al. In(Ga)As/GaAs site-controlled quantum dots with tailored morphology and high optical quality [J]. Appl. Phys. Lett., 2007, 90: 251109.

    LIU Jun, DONG Ping, SONG Wei, CAO Zhuo-liang. Implementation of quantum error-correction code via spin-photon interactions[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 459
    Download Citation