• Acta Optica Sinica
  • Vol. 40, Issue 22, 2214002 (2020)
Jingwei Ji1、2, Henan Cheng1、2, Zhen Zhang1、2, Kangkang Liu1, Jingfeng Xiang1, Wei Ren1, Lin Li1, and Desheng Lü1、*
Author Affiliations
  • 1Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS202040.2214002 Cite this Article Set citation alerts
    Jingwei Ji, Henan Cheng, Zhen Zhang, Kangkang Liu, Jingfeng Xiang, Wei Ren, Lin Li, Desheng Lü. Automatic Laser Frequency Stabilization System for Transportable 87Rb Fountain Clock[J]. Acta Optica Sinica, 2020, 40(22): 2214002 Copy Citation Text show less
    References

    [1] Clairon A, Salomon C, Guellati S et al. Ramsey resonance in a Zacharias fountain[J]. Europhysics Letters (EPL), 16, 165-170(1991).

    [2] Vian C, Rosenbusch P, Marion H et al. BNM-SYRTE fountains: recent results[J]. IEEE Transactions on Instrumentation and Measurement, 54, 833-836(2005).

    [3] Guéna J, Abgrall M, Rovera D et al. Progress in atomic fountains at LNE-SYRTE[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59, 391-409(2012).

    [4] Liu L, Lu D S, Chen W B et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nature Communications, 9, 2760(2018).

    [5] Micalizio S, Godone A, Levi F et al. Pulsed optically pumped 87Rb vapor cell frequency standard: a multilevel approach[J]. Physical Review A, 79, 013403(2009).

    [6] Sortais Y, Bize S, Nicolas C et al. Cold collision frequency shifts in a 87Rb atomic fountain[J]. Physical Review Letters, 85, 3117-3120(2000).

    [7] Peng X K, Ren W, Xiang J F et al. Performance analysis of space cold atomic clock based on in situ atomic detection[J]. Acta Optica Sinica, 39, 0802001(2019).

    [8] Wang Q, Wei R, Wang Y Z. Atomic fountain frequency standard: principle and development[J]. Acta Physica Sinica, 67, 163202(2018).

    [9] Guo F, Kong D H, Zhang Q et al. System development and clock transition spectroscopy detection of transportable 87Sr optical clock[J]. Acta Optica Sinica, 40, 0902001(2020).

    [10] Li T C, Li M S, Lin P W et al[J]. Experiments and considerations of realizing cold cesium atomic 74 cm fountain Acta Metrologica Sinica, 2003, 254-256.

    [11] Li C, Chen H C, Lin Y G et al[J]. Design of signal generator applied on sideband modulation pound-drever-hall laser frequency stabilization Acta Metrologica Sinica, 2018, 401-404.

    [12] Guo Y, Qiu Q, Wang Y X et al. Research on stability of Fabry-Perot cavity based on PDH[J]. Chinese Journal of Lasers, 43, 0402003(2016).

    [13] Han L, Lin Y G, Yang J et al. Research and development on laser frequency stabilization based on spectral hole-burning effect[J]. Laser & Optoelectronics Progress, 56, 110003(2019).

    [14] Zhang Y, Wang Q. Research of automatic frequency stability diode laser[J]. Chinese Journal of Lasers, 41, 0602001(2014).

    [15] Wang X W, Xiang J F, Peng X K et al. Light source of rubidium cold atomic clock based on fiber laser amplification and frequency doubling[J]. Acta Optica Sinica, 39, 0914002(2019).

    [16] Talvitie H, Pietilainen A, Ludvigsen H et al. Passive frequency and intensity stabilization of extended-cavity diode lasers[J]. Review of Scientific Instruments, 68, 1-7(1997).

    [17] Ren W, Sun Y G, Wang B et al. Highly reliable optical system for a rubidium space cold atom clock[J]. Applied Optics, 55, 3607-3614(2016).

    Jingwei Ji, Henan Cheng, Zhen Zhang, Kangkang Liu, Jingfeng Xiang, Wei Ren, Lin Li, Desheng Lü. Automatic Laser Frequency Stabilization System for Transportable 87Rb Fountain Clock[J]. Acta Optica Sinica, 2020, 40(22): 2214002
    Download Citation