• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 6, 791 (2020)
Gang CHEN1、3, Ding-Quan LIU1、2、3、*, Chong MA1, Kai-Xuan WANG1、3, Li ZHANG1, and Ling-Shan GAO1、3
Author Affiliations
  • 1Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
  • 2School of Physical Science and Technology, Shanghai Tech University, Shanghai200031, China
  • 3University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.06.018 Cite this Article
    Gang CHEN, Ding-Quan LIU, Chong MA, Kai-Xuan WANG, Li ZHANG, Ling-Shan GAO. Spectrum modulation of a thin-film filter with visible and near infrared dual band-pass channel[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 791 Copy Citation Text show less

    Abstract

    A remote sensing camera needs a thin-film filter with visible (wavelength 500~720 nm) and near infrared (wavelength (1 064±1) nm) dual band-pass spectrum channels at any same geometric position. The spectrum and transmission of the two channels need was modulated accurately. JGS-1 fused quartz was used as the substrate, Ta2O5 and SiO2 thin film was used as high (H) and low (L) reflective index layers respectively. 52 and 88 layers was deposited on the two surfaces of substrate by dual ion beam sputtering method. The average transmission of 500~720 nm band reaches 92%, and the peak transmission of (1 064±1) nm band controlled in the range of (26±1)%.

    Key wards: optical thin film, dual spectrum channel filter, ion beam sputtering deposition, spectrum modulation

    引言

    在利用可见光波段遥感成像的同时让激光回波被相机同步感知,就可以实现空间对地物目标的三维立体成像1-2。为了抑制工作波段以外的非信号光学能量,同时实现各个成像点的三维配准,需要双光谱通道的薄膜滤光片3-4,在滤光片的任意一个几何位置上都要同时通过2个光谱通道:可见光 500~720 nm 通道用于平面观测成像;近红外激光(1 064±1)nm通道用于探测目标的高度,也就是目标到相机之间的距离。

    基于各层薄膜之间界面上形成的前向子波的干涉,经过滤光片的透射波在某些波段出现干涉增强,在另外一些波段干涉减弱。将干涉增强波段设计在需要透射的工作光谱区域,把干涉减弱的波段设计在需要抑制的其他光谱区。这样就可以利用工作光谱对目标进行观测成像,抑制背景光和杂散光,有利于提高成像质量和观测准确性。在本文研究工作中,希望可见光波段的透过率尽可能高,同时将近红外激光探测波段的峰值透过率控制在25%~28%范围,相机自身发出的探测激光回波信号的能量够用又不会饱和。

    1 薄膜设计

    在可见光和近红外光谱区域,熔石英是非常好的透光材料5,理化性能稳定,能够经受空间环境,本文选用中国牌号JGS-1的熔石英片作为滤光片的基片。同样基于光学透明和理化性能稳定的原因,将氧化钽(Ta2O5)和氧化硅(SiO2)分别作为高、低折射率薄膜材料。

    由于可见光波段的透射光谱较宽,要求通带边缘的光谱变化迅速,在薄膜设计的时候,采用了短波截止滤光(长波通)膜系和长波截止滤光(短波通)膜系相结合的方法,形成可见光工作波段的光谱通带。长波通膜系在长波方向一般没有高级次的反射带6-9,为了抑制波长大于1 068 nm的透射光谱,引入一些非规整膜层;短波通膜系的通带部分能够覆盖500~720 nm的工作波段,在长波方向的截止带区域,通过引入非规整(指光学厚度不为设计波长1/4的)膜层,在波长1 064 nm处出现透射波的干涉加强,实现低强度的透射峰。将长波通膜系和短波通膜系分别镀制在基片的两个表面,两个截止滤光膜系形成500~720 nm的可见光工作波段,同时在近红外波长1 064 nm保留一个透射峰,从而形成一个完整的双光谱通道滤光片。这样的两个光谱通道在全视场的任何一个几何点上都同时存在,不同于视场拼接形成的多通道滤光片10-13,用不同光谱通道观测目标时没有位置和时间的差异。

    长波通膜系的设计为:Sub//0.563H 0.79L 1.554H 0.598L 0.863H 4.691L (0.563H 1.074L 0.563H)^110.359H 1.195L 0.712H 2.265L (1.52L 3.188H 1.52L)^11 1.038L 0.412H 0.46L 1.352H 1.595L//Air。其中,Sub和Air分别代表基片和空气,H和L分别代表光学厚度为设计波长1/4的高折射率(Ta2O5)膜层和低折射率(SiO2)膜层,这里的设计波长λ1=400 nm。这一膜系的透过率曲线如图1所示。

    Transmittance curve of the designed long-pass filter

    Figure 1.Transmittance curve of the designed long-pass filter

    短波通膜系的设计为:Air//0.725L 1.768H 0.233L 0.499H 0.195L 2.904H 1.312L(1.16H 1.16L)^111.16H 1.265L 2.516H 1.206L 0.994H 0.595L(.5L 1H.5L)^11 0.588L 1.02H 1.186L 1.476H 0.053L 1.171H 0.267L 0.163H//Sub,这里的设计波长λ2=800 nm。这一膜系的透过率曲线如图2所示。

    Transmittance curve of the designed short-pass filter

    Figure 2.Transmittance curve of the designed short-pass filter

    图1和2可以看出,长波通膜系和短波通膜系的结合形成了一个500~720 nm的光谱带通。在波长1 064 nm附近长波通膜系和短波通膜系均有一个透射峰,这两个透射峰并不完全重合,交叠之后在1 064 nm波长处形成一个透过率小于30%的透射峰。由于1 064 nm波长处的这个合成透射峰受到两个膜系的共同影响,其通带的宽度和透过率都难以控制,因此将这一透射峰的形成改为由短波通膜系单独实现,改进后的长波通膜系和短波通膜系如图3图4所示。图4中右侧,位于波长1 064 nm处的透射峰由一个膜系单独形成,该透射峰的波长位置、通带宽度、透过率等均易于控制。

    Transmittance curve of the designed long-pass filter after improving

    Figure 3.Transmittance curve of the designed long-pass filter after improving

    Transmittance curve of the designed short-pass filter after improving

    Figure 4.Transmittance curve of the designed short-pass filter after improving

    改进后的短波通膜系为:Air//0.488L 0.97H 1.029L (……隐去平滑修饰膜层4层……)1.04H 0.350L 0.242H 0.154L 0.881H 1.210L 1.243H 1.194L 1.044H 1.042L 1.051H 1.194L 1.198H 1.114L 0.951H 1.013L 0.929H 1.161L 0.224H 1.161L 0.933H 0.973L 1.148H 0.185L 1.103H 0.967L 0.906H 0.958L 0.895H 1.027L 2.197H 1.045L 0.863H 1.016L 0.870H 1.058L 2.192H 1.042L 0.929H 1.011L 0.967H 1.132L 1.417H 0.207L 0.237H//Sub。这里的设计波长λ3=900 nm。这是利用OptiLayer光学薄膜设计软件中的Needle优化算法,反复改变设计并优化后的结果,光谱趋近于设定目标。优化过程中,限制了物理厚度在10nm以下的极薄膜层的存在。这些极薄膜层对膜厚监控精度要求很高,在使用过程中也没有常规膜层稳定。这一设计膜系共有52层薄膜,最薄的膜层是第22层的0.184L和第27层的0.224H,对应的膜层几何厚度分别约为28.7 nm和23.6 nm。

    Transmittance curve of the designed dual band-pass filter after improving

    Figure 5.Transmittance curve of the designed dual band-pass filter after improving

    2 膜层厚度误差对光谱的影响

    对优化后的短波通膜系,利用OptiLayer软件进行了膜层误差对于光谱的敏感度分析,各个膜层的敏感度分布在图6中给出。这些膜层的敏感程度差异较大,最为敏感的是(从基片算起)第28层膜,其次为第26层膜,他们都是标记为1.161L的低折射率膜层。通常情况下,控制住最为敏感的几层膜是复杂膜系制备中的关键环节14-16

    Sensitivity distributing column of each layers of the short-pass filter

    Figure 6.Sensitivity distributing column of each layers of the short-pass filter

    对整个膜系结构中最敏感的第28层引入1~3%的误差,观察这样的误差对透射率光谱曲线的影响。发现引入误差对500~720 nm可见光工作波段的影响可以忽略,但是对波长1 064 nm处的透射峰影响明显,引入误差对光谱的影响在图7-8中给出。从图8可以看出,哪怕只引入1%的误差,该透射峰就会偏离工作波长,因此该层薄膜的误差应该在0.5%以内,对应于0.9 nm的几何厚度。本文使用的双离子束溅射薄膜制备系统,能够有效控制膜层几何厚度0.5 nm以内,保证了所设计的复杂光学膜系的有效制备。

    Influence of layer thickness error on the transmittance curve of the designed short-pass filter after improving

    Figure 7.Influence of layer thickness error on the transmittance curve of the designed short-pass filter after improving

    Influence of layer thickness error on the 1064nm transmission peak curves

    Figure 8.Influence of layer thickness error on the 1064nm transmission peak curves

    3 滤光片的制作

    薄膜的制备采用双离子束溅射沉积(Dual Ion Beam Sputtering,DIBS)技术。双离子束溅射沉积技术,是一种经典的精密光学薄膜制备方法17-20,用该技术制备的光学薄膜表面光滑,膜层致密,光学和理化性能稳定,较慢的生长速率有利于薄膜厚度的精确控制,特别适合于氧化物光学介质薄膜的制备。如图9所示,在高真空腔体中,用一个较大尺寸(16 cm口径)的聚焦型射频离子源作为溅射离子源,用来轰击被溅射靶材,将靶材料以原子形式溅射出来,沉积到基片表面生长成薄膜;与此同时,另一个较小尺寸(12 cm口径)匀束型离子源作为辅助离子源,用来轰击生长中的薄膜表面,增加沉积原子的表面迁移率,改善生长膜层的化学配比和致密程度,对制备精密稳定的氧化物光学薄膜而言是非常有效的技术手段。图9是用DIBS技术制备薄膜的真空室内布局示意图。被溅射的靶材料分别是纯度为99.99%的Ta靶材和纯度为99.995%的SiO2靶材。溅射离子源中通入纯度为5N的氩(Ar)气作为工作气体,同时往辅助离子源中导入氧气(O2)为主的混合气体作为工作气体。薄膜生长过程中,基片的温度保持在(90±5)℃范围,基片选用JGS-1石英玻璃。膜层的厚度用间接透射式光学方法进行控制,监控精度达到0.2%。薄膜镀制完成后,对滤光片的透射率光谱进行了测量,测量得到的光谱曲线与设计的光谱曲线在图10中给出,两条曲线十分接近。

    Schematic layout of the DIBS thin films fabrication system

    Figure 9.Schematic layout of the DIBS thin films fabrication system

    Transmittance curves of the dual band-pass filter

    Figure 10.Transmittance curves of the dual band-pass filter

    4 结论

    利用长波通和短波通结合的光学膜系,在波长500~720 nm的可见光工作波段形成了矩形度很好的光谱通带,波形系数接近1.13;通过对短波通膜系的优化,在波长1 064 nm处形成一个透过率为26%左右的透射峰,用于光学系统的激光透射。这样,就在滤光片的任一几何位置上同时得到了可见光和近红外的双光谱带通。近红外光谱带通对膜层的误差非常敏感,敏感层的厚度误差需要控制在0.9 nm以内。采用双离子束溅射沉积技术制备了所有薄膜,实际膜层误差控制在0.5 nm以内,测量得到的可见光和近红外双带通薄膜滤光片透射光谱曲线与设计曲线基本吻合。

    References

    [1] A W Yu, M A Krainak, D J Harding. 2. Proc. of SPIE, 8599, 85990(2013).

    [2] M A Krainak, J B Abshire, J Camp. 3. Proc. of SPIE, 8381, 83810(2012).

    [4] HJ Li, HJ He, JC Yu. Dual-band simultaneous lasing in MOFs single crystals with Fabry-Perot microcavities. Science China Chemistry, 62, 987-993(2019).

    [6] H A Macleod. Thin-film optical filters, 279(2010).

    [7] J R Oh, S H Cho, H K Park. Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter. Optics Express, 18, 11063-11072(2010).

    [8] S A Kumar, C L Nagendra, H G Shanbhogue. Near-infrared bandpass filters from Si/SiO2 multilayer coatings. Optical Engineering, 38, 368-380(1999).

    [11] . Effect of annealing on the damage threshold and optical properties of HfO2/Ta2O5/SiO2 high-reflection film. Chinese Optics Letters, 17, 113101(2019).

    [14] Third-order nonlinear optical properties of WTe2 films synthesized by pulsed laser deposition. Photonics Research, 7, 12001493(2019).

    [15] E K Ejigu, B M Lacquet. Sensitivity versus polarisation in multilayer optical thin film design. S Afr J Sci, 108, 7-8(2012).

    [16] Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer. Applied Optics, 57, 2955-2961(2018).

    [17] J Y Wu, C Lee. Effect of the working gas of the ion-assisted source on the optical and mechanical properties of SiO2 films deposited by dual ion beam sputtering with Si and SiO2 as the starting materials. Applied Optics, 45, 3510-3515(2006).

    [18] C Lee, C J Tang. TiO2-Ta2O5 composite thin films deposited by radio frequency ion-beam sputtering. Applied Optics, 45, 9125-9131(2006).

    [20] J Yang, X K Weng, M L Zhang. The effects of interruption time on the growth of Ge islands prepared by ion beam sputtering deposition. Vacuum, 154, 115-119(2018).

    Gang CHEN, Ding-Quan LIU, Chong MA, Kai-Xuan WANG, Li ZHANG, Ling-Shan GAO. Spectrum modulation of a thin-film filter with visible and near infrared dual band-pass channel[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 791
    Download Citation