• Photonic Sensors
  • Vol. 9, Issue 4, 337 (2019)
[in Chinese]1、* and [in Chinese]2
Author Affiliations
  • 1Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
  • 2School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
  • show less
    DOI: 10.1007/s13320-019-0542-0 Cite this Article
    [in Chinese], [in Chinese]. Modeling of Refractive Index Sensing Using Au Aperture Arrays on a Bragg Fiber Facet[J]. Photonic Sensors, 2019, 9(4): 337 Copy Citation Text show less
    References

    [1] R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” Journal of Molecular Recognition, 2004, 17(3): 151-161.

    [2] J. Chen, Q. Zhang, C. Peng, C. J. Tang, X. Y. Shen, L. C. Deng, et al., “Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing,” IEEE Photonics Technology Letters, 2018, 30(8): 728-731.

    [3] J. Chen, W. F. Fan, T. Zhang, C. J. Tang, X. Y. Chen, J. J. Wu, et al., “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Optics Express, 2017, 25(4): 3675-3681.

    [4] J. Chen, J. Yuan, Q. Zhang, H. M. Ge, C. J. Tang, Y. Liu, et al., “Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing,” Optical Materials Express, 2018, 8(2): 342-347.

    [5] J. Chen, H. Nie, C. Peng, S. B. Qi, C. J. Tang, Y. Zhang, et al., “Enhancing the magnetic plasmon resonance of three-dimensional optical metamaterials via strong coupling for high-sensitivity sensing,” Journal of Lightwave Technology, 2018, 36(16): 3481-3485.

    [6] T. W. Ebbesen, H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 1998, 391(6668): 667-669.

    [7] R. Gordon, D. Sinton, L. K. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Accounts of Chemical Research, 2008, 41(8): 1049-1057.

    [8] H. C. Zhou, X. Chen, P. Hou, and C. F. Li, “Giant bistable lateral shift owing to surface-plasmon excitation in Kretschmann configuration with a Kerr nonlinear dielectric,” Optics Letters, 2008, 33(11): 1249-1251.

    [9] J. C. Hsu, S. W. Jeng, and Y. S. Sun, “Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range,” Optics Communications, 2015, 341: 210–217.

    [10] B. B. Shuai, L. Xia, Y. T. Zhang, and D. M. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Optics Express, 2012, 20 (6): 5974-5986.

    [11] P. P. Jia and J. Yang, “Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing,” Applied Physics Letters, 2013, 102(24): 243107-1-243107-3.

    [12] P. P. Jia and Y. Jun, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale, 2014, 6(15): 8836-8843.

    [13] P. P. Jia, Z. L. Yang, J. Yang, and E. H. Heike, “Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination,” ACS Sensors, 2016, 1(8): 1078-1083.

    [14] P. P. Jia, H. Jiang, J. Sabarinathan, and J. Yang, “Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance,” Nanotechnology, 2013, 24(19): 195501.

    [15] P. P. Jia and J. Yang, “Universal sensitivity of propagating surface plasmon resonance in nanostructure arrays,” Optics Express, 2015, 23(14): 18658-18664.

    [16] E. M. Zhao, P. P. Jia, E. H. Heike, and H. Y. Li, “Localized surface plasmon resonance sensing structure based on gold nanohole array on beveled fiber edge,” Nanotechnology, 2017, 28(43): 435504.

    [17] Lumerical Solutions Inc., FDTD Solutions User Manual, Vancouver, BC, Canada, 2011.

    [18] C. Liu, L. Yang, X. L. Lu, and Q. Liu, “Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers,” Optics Express, 2017, 25(13): 14227-14237.

    [19] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, 1972, 6(12): 4370-4379.

    [20] A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Optics Express, 2016, 24(3): 2485-2495.

    [21] M. H. Elshorbagy, C. Alexander, and A. Javier, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photonics Research, 2017, 5(6): 654-661.

    [in Chinese], [in Chinese]. Modeling of Refractive Index Sensing Using Au Aperture Arrays on a Bragg Fiber Facet[J]. Photonic Sensors, 2019, 9(4): 337
    Download Citation