• Chinese Optics Letters
  • Vol. 20, Issue 10, 100007 (2022)
Samrit Mainali, Fabien Gatti*, and Osman Atabek
Author Affiliations
  • Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
  • show less
    DOI: 10.3788/COL202220.100007 Cite this Article Set citation alerts
    Samrit Mainali, Fabien Gatti, Osman Atabek. Laser control strategies in full-dimensional funneling dynamics: the case of pyrazine [Invited][J]. Chinese Optics Letters, 2022, 20(10): 100007 Copy Citation Text show less
    References

    [1] G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, X. Zhu. Using coherence to enhance function in chemical and biophysical systems. Nature, 543, 647(2017).

    [2] C. Creatore, M. A. Parker, S. Emmott, A. W. Chin. Efficient biologically inspired photocell enhanced by delocalized quantum states. Phys. Rev. Lett., 111, 253601(2013).

    [3] M. Cainelli, Y. Tanimura. Exciton transfer in organic photovoltaic cells: a role of local and nonlocal electron–phonon interactions in a donor domain. J. Chem. Phys., 154, 034107(2021).

    [4] H.-G. Duan, M. Thorwart. Quantum mechanical wave packet dynamics at a conical intersection with strong vibrational dissipation. J. Phys. Chem. Lett., 7, 382(2016).

    [5] C. Arnold, O. Vendrell, R. Welsch, R. Santra. Control of nuclear dynamics through conical intersections and electronic coherences. Phys. Rev. Lett., 120, 123001(2018).

    [6] E. Mangaud, B. Lasorne, O. Atabek, M. Desouter-Lecomte. Statistical distributions of the tuning and coupling collective modes at a conical intersection using the hierarchical equations of motion. J. Chem. Phys., 151, 244102(2019).

    [7] H. Köppel, D. R. Yarkony, H. Barentzen. The Jahn-Teller Effect: Fundamentals and Implications for Physics and Chemistry(2009).

    [8] D. R. Yarkony. Diabolical conical intersections. Rev. Mod. Phys., 68, 985(1996).

    [9] D. R. Yarkony. Modern Electronic Structure Theory(1995).

    [10] J. D. Roscioli, S. Ghosh, A. M. LaFountain, H. A. Frank, W. F. Beck. Structural tuning of quantum decoherence and coherent energy transfer in photosynthetic light harvesting. J. Phys. Chem. Lett., 9, 5071(2018).

    [11] W. Hu, B. Gu, I. Franco. Toward the laser control of electronic decoherence. J. Chem. Phys., 152, 184305(2020).

    [12] S. Tomasi, S. Baghbanzadeh, S. Rahimi-Keshari, O. I. Kassal. Coherent and controllable enhancement of light-harvesting efficiency. Phys. Rev. A, 100, 043411(2019).

    [13] G. Breuil, E. Mangaud, B. Lasorne, O. Atabek, M. Desouter-Lecomte. Funneling dynamics in a phenylacetylene trimer: coherent excitation of donor excitonic states and their superposition. J. Chem. Phys., 155, 034303(2021).

    [14] V. Stert, P. Farmanara, W. Radloff. Electron configuration changes in excited pyrazine molecules analyzed by femtosecond time-resolved photoelectron spectroscopy. J. Chem. Phys., 112, 4460(2000).

    [15] A. Raab, G. A. Worth, H.-D. Meyer, L. S. Cederbaum. Molecular dynamics of pyrazine after excitation to the S2 electronic state using a realistic 24-mode model Hamiltonian. J. Chem. Phys., 110, 936(1999).

    [16] L. Seidner, G. Stock, A. L. Sobolewski, W. Domcke. Ab initio characterization of the S1–S2 conical intersection in pyrazine and calculation of spectra. J. Chem. Phys., 96, 5298(1992).

    [17] G. A. Worth, H.-D. Meyer, L. S. Cederbaum. The effect of a model environment on the S2 absorption spectrum of pyrazine: a wave packet study treating all 24 vibrational modes. J. Chem. Phys., 105, 4412(1996).

    [18] C. Woywood, W. Domcke, A. L. Sobolewski, H.-J. Werner. Characterization of the S1–S2 conical intersection in pyrazine using ab initio multiconfiguration self-consistent-field and multireference configuration-interaction methods. J. Chem. Phys., 100, 1400(1994).

    [19] I. Thanopulos, X. Li, P. Brumer, M. Shapiro. Time-dependent partitioning theory of the control of radiationless transitions in 24-mode pyrazine. J. Chem. Phys., 137, 064111(2012).

    [20] M. Sukharev, T. Seideman. Optimal control approach to suppression of radiationless transitions. Phys. Rev. Lett., 93, 093004(2004).

    [21] M. Sukharev, T. Seideman. Optical control of nonradiative decay in polyatomic molecules. Phys. Rev. A., 71, 012509(2005).

    [22] P. S. Christopher, M. Shapiro, P. Brumer. Overlapping resonances in the coherent control of radiationless transitions: internal conversion in pyrazine. J. Chem. Phys., 123, 064313(2005).

    [23] P. S. Christopher, M. Shapiro, P. Brumer. Quantum control of internal conversion in 24-vibrational-mode pyrazine. J. Chem. Phys., 125, 124310(2006).

    [24] P. S. Christopher, M. Shapiro, P. Brumer. Efficient partitioning technique for computing the dynamics of intramolecular processes: radiationless transitions in pyrazine. J. Chem. Phys., 124, 184107(2006).

    [25] M. Saab, M. Sala, B. Lasorne, S. Guérin, F. Gatti. Full-dimensional control of the radiationless decay in pyrazine using the dynamic Stark effect. J. Chem. Phys., 141, 134114(2014).

    [26] M. Sala, M. Saab, B. Lasorne, F. Gatti, S. Guérin. Laser control of the radiationless decay in pyrazine using the dynamic Stark effect. J. Chem. Phys., 140, 194309(2014).

    [27] M. Sala, S. Guérin, F. Gatti. Quantum dynamics of the photostability of pyrazine. J. Chem. Phys., 17, 29518(2015).

    [28] L. Wang, H.-D. Meyer, V. May. Femtosecond laser pulse control of multidimensional vibrational dynamics: computational studies on the pyrazine molecule. J. Chem. Phys., 125, 014102(2006).

    [29] A. Ferretti, A. Lami, G. Villani. Control of the yield of photophysical/photochemical processes by excitation with properly delayed ultrashort phase-locked light pulses: a model study on the pyrazine S2→ S1 internal conversion. Chem. Phys., 196, 447(1995).

    [30] J. Savolainen, R. Fanciulli, N. Dijkhuizen, A. L. Moore, J. Hauer, T. Buckup, M. Motzkus, J. L. Herek. Controlling the efficiency of an artificial light-harvesting complex. Proc. Nat. Acad. Sci., 105, 7641(2008).

    [31] J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, M. Motzkus. Quantum control of energy flow in light harvesting. Nature, 417, 533(2002).

    [32] J. Hauer, T. Buckup, M. Motzkus. Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection. Chem. Phys., 350, 220(2008).

    [33] T. Buckup, J. Hauer, J. Voll, R. Vivie-Riedle, M. Motzkus. A general control mechanism of energy flow in the excited state of polyenic biochromophores. Farad. Disc., 153, 213(2011).

    [34] G. A. Worth, H.-D. Meyer, L. S. Cederbaum. Relaxation of a system with a conical intersection coupled to a bath: a benchmark 24-dimensional wave packet study treating the environment explicitly. J. Chem. Phys., 109, 3518(1998).

    [35] H.-D. Meyer, U. Manthe, L. S. Cederbaum. The multi-configurational time-dependent Hartree approach. J. Chem. Phys., 165, 73(1990).

    [36] U. Manthe, H.-D. Meyer, L. S. Cederbaum. Wave-packet dynamics within the multiconfiguration Hartree framework: general aspects and application to NOCl. J. Chem. Phys., 97, 3199(1992).

    [37] M. H. Beck, A. Jäckle, G. A. Worth, H.-D. Meyer. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep., 324, 1(2000).

    [38] H.-D. Meyer, F. Gatti, G. A. Worth. Multidimensional Quantum Dynamics (MCTDH Theory and Applications(2009).

    [39] G. A. Worth, M. H. Beck, A. Jäckle, H.-D. Meyer.

    [40] H. Köppel, W. Domcke, L. S. Cederbaum. Multimode molecular dynamics beyond the Born-Oppenheimer approximation. Adv. Chem. Phys., 57, 59(1984).

    [41] R. Schneider, W. Domcke, H. Köppel. Aspects of dissipative electronic and vibrational dynamics of strongly vibronically coupled systems. J. Chem. Phys., 92, 1045(1990).

    [42] M. Sala, S. Guérin, F. Gatti. Quantum dynamics of the photostability of pyrazine. Phys. Chem. Chem. Phys., 17, 29518(2015).

    [43] E. Narevicius, N. Moiseyev. Non-Hermitian formulation of interference effect in scattering experiments. J. Chem. Phys., 113, 6088(2000).

    [44] R. Chamaki, M. Telmini, O. Atabek, E. Charron. Anisotropy control in photoelectron spectra: a coherent two-pulse interference strategy. Phys. Rev. A, 100, 033402(2019).

    [45] D. Sugny, A. Keller, O. Atabek, D. Daems, C. M. Dion, S. Guérin, H. R. Jauslin. Reaching optimally oriented molecular states by laser kicks. Phys. Rev. A, 69, 033402(2004).

    Data from CrossRef

    [1] László Biró, András Csehi. Coherent control of the vibrational dynamics of aligned heteronuclear diatomic molecules. Physical Review A, 106, 043113(2022).

    Samrit Mainali, Fabien Gatti, Osman Atabek. Laser control strategies in full-dimensional funneling dynamics: the case of pyrazine [Invited][J]. Chinese Optics Letters, 2022, 20(10): 100007
    Download Citation