• Laser & Optoelectronics Progress
  • Vol. 54, Issue 10, 101411 (2017)
Lu Haifei*, Lu Jinzhong, Zhang Wenquan, and Luo Kaiyu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.101411 Cite this Article Set citation alerts
    Lu Haifei, Lu Jinzhong, Zhang Wenquan, Luo Kaiyu. Simulation Analysis and Experimental Study of 316L Stainless Steel Weldments Processed by Laser Shock Peening[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101411 Copy Citation Text show less
    References

    [1] Wang Ruolin, Gao Wei, Ye Xiaowei, et al. Some issues of fatigue failure of welded structures[J]. Engineering Journal of Wuhan University, 2013, 46(2): 194-198.

    [2] Yousefieh M, Shamanian M, Saatchi A. Influence of heat input in pulsed current GTAW process on microstructure and corrosion resistance of duplex stainless steel welds[J]. Journal of Iron and Steel Research International, 2011, 18(9): 65-69.

    [3] Ding J H, Zhang L, Li D P, et al. Corrosion and stress corrosion cracking behavior of 316L austenitic stainless steel in high H2S-CO2-Cl- environment[J]. Journal of Materials Science, 2013, 48(10): 3708-3715.

    [4] Xu Jijin, Chen Ligong, Ni Chunzhen. Effect of mechanical stress relieving method on welding residual stress[J]. Journal of Mechanical Engineering, 2009, 45(9): 291-295.

    [5] Zhang Shukui, Luo Zhiting. Analysis of residual stress produced by welding and its elimination methods[J]. Metallurgical Power, 1996, (6): 38-41.

    [6] Liu Kaixin, Zhang Jinxiang, Liu Ying, et al. Numerical simulation on the relief of welding residual stress through an explosive treatment[J]. Chinese Journal of Applied Mechanics, 2004, 21(2): 10-15.

    [7] Xiang Jianyun, Ge Maozhong, Zhang Yongkang. Experiment of laser shock strengthening tungsten inert-gas welded AZ31B magnesium alloy[J]. Acta Optica Sinica, 2013, 33(s1): s114015.

    [8] Yin Sumin, Zhang Chao, Wang Yun, et al. Numerical analysis for the structure effect on stainless steel welding treated by laser shock processing[J]. Chinese J Lasers, 2013, 40(5): 0503005.

    [9] Sano Y, Obata M, Kubo T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering A, 2006, 417(1/2): 334-340.

    [10] Xu Guojian, Zhong Liming, Wang Hong, et al. Performance of aluminum alloy welded joints by laser shock processing[J]. Chinese J Lasers, 2014,41(6): 0603007.

    [11] Li Wei, Li Yinghong, He Weifeng, et al. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15-19.

    [12] See D W, Dulaney J L, Clauer A H, et al. The air force manufacturing technology laser peening initiative[J]. Surface Engineering, 2002,18(1): 32-36.

    [13] Su Chun, Zhou Jianzhong, Huang Shu, et al. Influence of laser shock processing on fatigue properties of 6061-T6 aluminum alloy TIG welded joints[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061403.

    [14] Lu Jinzhong, Zhang Yongkang, Kong Dejun, et al. Effects on mechanical properties of TC4 welding line by laser shocking processing[J]. Journal of Jiangsu University (Natural Science Edition), 2006, 27(3): 207-210.

    [15] Lu Jinzhong, Zhang Yongkang, Qian Xiaoming, et al. Effects on residual stresses of Ti6Al4V electron beam welding line by laser shock processing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7): 869-872.

    [16] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

    [17] Zhou Nan, Qiao Dengjiang. Materials dynamics under pulse beam radiation[M]. Beijing: National Defense Industry Press, 2002.

    Lu Haifei, Lu Jinzhong, Zhang Wenquan, Luo Kaiyu. Simulation Analysis and Experimental Study of 316L Stainless Steel Weldments Processed by Laser Shock Peening[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101411
    Download Citation