• Opto-Electronic Engineering
  • Vol. 46, Issue 3, 1 (2019)
Cao Liangcai, Wu Shenghan, He Zehao, Li Yaoyao, and Jin Guofan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180620 Cite this Article
    Cao Liangcai, Wu Shenghan, He Zehao, Li Yaoyao, Jin Guofan. Monitoring and optimization of the synthesis process of the holographic doped photopolymers[J]. Opto-Electronic Engineering, 2019, 46(3): 1 Copy Citation Text show less
    References

    [1] Li C M Y, Cao L C, Wang Z, et al. Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer[J]. Optics Letters, 2014, 39(24): 6891–6894.

    [2] Vaia R A, Maguire J F. Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers[J]. Chemistry of Materials, 2007, 19(11): 2736–2751.

    [3] Zhuo D H, Tao S Q, Shi M Q, et al. Shrinkage of photopolymer for holographic recording materials[J]. Chinese Journal of Lasers, 2007, 34(11): 1543–1547.

    [4] Fujii R, Guo J X, Klepp J, et al. Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics[J]. Optics Letters, 2014, 39(12): 3453–3456.

    [5] Ashley J, Bernal M P, Burr G W, et al. Holographic data storage technology[J]. IBM Journal of Research and Development, 2000, 44(3): 341–368.

    [6] Horimai H, Tan X D, Li J. Collinear holography[J]. Applied Optics, 2005, 44(13): 2575–2579.

    [7] Sugawara S, Murase K, Kitayama T. Holographic recording by dye-sensitized photopolymerization of acrylamide[J]. Applied Optics, 1975, 14(2): 378–382.

    [8] Lin S H, Hsu K Y, Chen W Z, et al. Phenanthrenequinone-doped poly (methyl methacrylate) photopolymer bulk for volume holographic data storage[J]. Optics Letters, 2000, 25(7): 451–453.

    [9] Hsu K Y, Lin S H, Hsiao Y N, et al. Experimental characterization of phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for volume holographic storage[J]. Optical Engineering, 2003, 42(5): 1390–1396.

    [10] Cody D, Gribbin S, Mihaylova E, et al. Low-toxicity photopolymer for reflection holography[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18481–18487.

    [11] Navarro-Fuster V, Ortu o M, Fernández R, et al. Peristrophic multiplexed holograms recorded in a low toxicity photopolymer[J]. Optical Materials Express, 2017, 7(1): 133–147.

    [12] Li C M Y, Cao L C, Li J M, et al. Improvement of volume holographic performance by plasmon-induced holographic absorption grating[J]. Applied Physics Letters, 2013, 102(6): 061108.

    [13] Li C M Y, Cao L C, He Q S, et al. Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer[J]. Optics Express, 2014, 22(5): 5017–5028.

    [14] Cao L C, Wu S H, Hao J P, et al. Enhanced diffraction efficiency of mixed volume gratings with nanorod dopants in polymeric nanocomposite[J]. Applied Physics Letters, 2017, 111(14): 141104.

    [15] Vaia R A, Dennis C L, Natarajan L V, et al. One-step, micrometer-scale organization of nano-and mesoparticles using holographic photopolymerization: a generic technique[J]. Advanced Materials, 2001, 13(20): 1570–1574.

    [16] Suzuki N, Tomita Y, Ohmori K, et al. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording[J]. Optics Express, 2006, 14(26): 12712–12719.

    [17] Goldenberg L M, Sakhno O V, Smirnova T N, et al. Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation[J]. Chemistry of Materials, 2008, 20(14): 4619–4627.

    [18] Tomita Y, Urano H, Fukamizu T A, et al. Nanoparticle-polymer composite volume holographic gratings dispersed with ultrahigh-refractive-index hyperbranched polymer as organic nanoparticles[J]. Optics Letters, 2016, 41(6): 1281–1284.

    [19] Ni M L, Peng H Y, Liao Y G, et al. 3D Image storage in photopolymer/ZnS nanocomposites tailored by “Photoinitibitor”[J]. Macromolecules, 2015, 48(9): 2958–2966.

    [20] Liu S, Gleeson M R, Guo J X, et al. High Intensity response of photopolymer materials for holographic grating formation[J]. Macromolecules, 2010, 43(22): 9462–9472.

    [21] Gallego S, Ortuno M, Neipp C, et al. Overmodulation effects in volume holograms recorded on photopolymers[J]. Optics Communications, 2003, 215(4–6): 263–269.

    [22] Qi Y, Tolstik E, Li H Y, et al. Study of PQ/PMMA photopolymer. Part 2: experimental results[J]. Journal of the Optical Society of America B, 2013, 30(12): 3308–3315.

    [23] Gallego S, Neipp C, Ortu o M, et al. Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer[J]. Optics Communications, 2008, 281(6): 1480–1485.

    [24] Martínez F J, Fernández R, Márquez A, et al. Exploring binary and ternary modulations on a PA-LCoS device for holographic data storage in a PVA/AA photopolymer[J]. Optics Express, 2015, 23(16): 20459–20479.

    [25] Pramitha V, Das B, Joseph J, et al. High efficiency panchromatic photopolymer recording material for holographic data storage systems[J]. Optical Materials, 2016, 52: 212–218.

    [26] Tomita Y, Furushima K, Ochi K, et al. Organic nanoparticle(Hyperbranched Polymer)-dispersed photopolymers for volume holographic storage[J]. Applied Physics Letters, 2006, 88(7): 071103.

    [27] Sun C X, Wang S L, Li R P, et al. Holographic characteristic parameters of a water-resistant photopolymer in different thickness[J]. Laser Technology, 2008, 32(5): 545–547, 550.

    CLP Journals

    [1] JIN Xin, HU Ying. Detection of Vehicle Crews Based on Modified Faster R-CNN[J]. Infrared Technology, 2020, 42(11): 1103

    Cao Liangcai, Wu Shenghan, He Zehao, Li Yaoyao, Jin Guofan. Monitoring and optimization of the synthesis process of the holographic doped photopolymers[J]. Opto-Electronic Engineering, 2019, 46(3): 1
    Download Citation