• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210850 (2022)
Zeyu Zhan, Jixiang Chen, Meng Liu, Aiping Luo, Wencheng Xu, and Zhichao Luo*
Author Affiliations
  • School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
  • show less
    DOI: 10.3788/IRLA20210850 Cite this Article
    Zeyu Zhan, Jixiang Chen, Meng Liu, Aiping Luo, Wencheng Xu, Zhichao Luo. Recent progress of 1.7 μm ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210850 Copy Citation Text show less
    References

    [1] F W Wise, A Chong, W H Renninger. High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser & Photonics Reviews, 2, 58-73(2008).

    [2] C Kerse, H Kalaycıoğlu, P Elahi, et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537, 84-88(2016).

    [3] N G Horton, K Wang, D Kobat, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics, 7, 205-209(2013).

    [4] E Agrell, M Karlsson, A R Chraplyvy, et al. Roadmap of optical communications. Journal of Optics, 18, 063002(2016).

    [5] W Shi, Q Fang, X Zhu, et al. Fiber lasers and their applications. Applied Optics, 53, 6554-6568(2014).

    [6] A N Bashkatov, E A Genina, V I Kochubey, et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm. Optics and Spectroscopy, 99, 836-842(2005).

    [7] L A Sordillo, Y Pu, S Pratavieira, et al. Deep optical imaging of tissue using the second and third near-infrared spectral windows. Journal of Biomedical Optics, 19, 056004(2014).

    [8] L Shi, L A Sordillo, A Rodríguez‐Contreras, et al. Transmission in near‐infrared optical windows for deep brain imaging. Journal of Biophotonics, 9, 38-43(2016).

    [9] W R Zipfel, R M Williams, W W Webb. Nonlinear magic: Multiphoton microscopy in the biosciences. Nature Biotechnology, 21, 1369-1377(2003).

    [10] P Cadroas, L Abdeladim, L Kotov, et al. All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy. Journal of Optics, 19, 065506(2017).

    [11] Y Nomura, H Murakoshi, T Fuji. Short-wavelength, ultrafast thulium-doped fiber laser system for three-photon microscopy. OSA Continuum, 3, 1428-1435(2020).

    [12] U Sharma, E W Chang, S H Yun. Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth. Optics Express, 16, 19712-19723(2008).

    [13] S P Chong, C W Merkle, D F Cooke, et al. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 μm optical coherence tomography. Optics Letters, 40, 4911-4914(2015).

    [14] M Yamanaka, T Teranishi, H Kawagoe, et al. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging. Scientific Reports, 6, 31715(2016).

    [15] H Kawagoe, S Ishida, M Aramaki, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography. Biomedical Optics Express, 5, 932-943(2014).

    [16] M Wu, K Jansen, A F W Steen, et al. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. Biomedical Optics Express, 6, 3276-3286(2015).

    [17] V V Alexander, K Ke, Z Xu, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling. Lasers in Surgery and Medicine, 43, 470-480(2011).

    [18] I Mingareev, F Weirauch, A Olowinsky, et al. Welding of polymers using a 2 μm thulium fiber laser. Optics & Laser Technology, 44, 2095-2099(2012).

    [19] J M O Daniel, N Simakov, M Tokurakawa, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band. Optics Express, 23, 18269-18276(2015).

    [20] K Wang, C Xu. Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy. Applied Physics Letters, 99, 071112(2011).

    [21] T N Nguyen, K Kieu, D Churin, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm. IEEE Photonics Technology Letters, 25, 1893-1896(2013).

    [22] S V Firstov, S V Alyshev, K E Riumkin, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm. Optics Letters, 40, 4360-4363(2015).

    [23] M Yamada, K Senda, T Tanaka, et al. Tm 3+-Tb 3+-doped tunable fibre ring laser for 1700 nm wavelength region. Electronics Letters, 49, 1287-1288(2013).

    [24] T Noronen, O Okhotnikov, R Gumenyuk. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band. Optics Express, 24, 14703-14708(2016).

    [25] S D Agger, J H Povlsen. Emission and absorption cross section of thulium doped silica fibers. Optics Express, 14, 50-57(2006).

    [26] S D Jackson. The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared. Laser & Photonics Reviews, 3, 466-482(2009).

    [27] Z Li, Y Jung, J M O Daniel, et al. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers. Optics Letters, 41, 2197-2200(2016).

    [28] C Li, C Kong, K K Y Wong. High energy noise-like pulse generation from a mode-locked thulium-doped fiber laser at 1.7 μm. IEEE Photonics Journal, 11, 1-6(2019).

    [29] K Wang, N G Horton, K Charan, et al. Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 20, 50-60(2013).

    [30] H Y Chung, W Liu, Q Cao, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 µm. Optics Express, 25, 15760-15771(2017).

    [31] D Fehrenbacher, P Sulzer, A Liehl, et al. Free-running performance and full control of a passively phase-stable Er: fiber frequency comb. Optica, 2, 917-923(2015).

    [32] S Firstov, S Alyshev, M Melkumov, et al. Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600-1800 nm. Optics Letters, 39, 6927-6930(2014).

    [33] T Noronen, S Firstov, E Dianov, et al. 1700 nm dispersion managed mode-locked bismuth fiber laser. Scientific Reports, 6, 24876(2016).

    [34] A Khegai, M Melkumov, K Riumkin, et al. NALM-based bismuth-doped fiber laser at 1.7 μm. Optics Letters, 43, 1127-1130(2018).

    [35] X Xiao, H Guo, Z Yan, et al. 3 W narrow-linewidth ultra-short wavelength operation near 1707 nm in thulium-doped silica fiber laser with bidirectional pumping. Applied Physics B, 123, 135(2017).

    [36] M D Burns, P C Shardlow, P Barua, et al. 47 W continuous-wave 1726 nm thulium fiber laser core-pumped by an erbium fiber laser. Optics Letters, 44, 5230-5233(2019).

    [37] Wienke A, Wt D, Lecourt J B, et al. High energy, femtosecond fiber laser source at 1750 nm f 3photon microscopy (Conference Presentation)[C]Fiber Lasers Glass Photonics: Materials through Applications, 2018, 10683: 106831T.

    [38] S D Emami, M M Dashtabi, H J Lee, et al. 1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers. Scientific Reports, 7, 12747(2017).

    [39] L Zhang, J Zhang, Q Sheng, et al. Efficient multi-Watt 1720 nm ring-cavity Tm-doped fiber laser. Optics Express, 28, 37910-37918(2020).

    [40] Puncken O, Kirsch D C, Wienke A, et al. Ultrafast thulium fiber laser operating at 1750 nm [C]Conference on Lasers ElectroOptics Europe & European Quantum Electronics Conference, 2017: 1.

    [41] C Li, X Wei, C Kong, et al. Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser. APL Photonics, 2, 121302(2017).

    [42] D Anderson, M Desaix, M Lisak, et al. Wave breaking in nonlinear-optical fibers. Journal of the Optical Society of America B, 9, 1358-1361(1992).

    [43] S M J Kelly. Characteristic sideband instability of periodically amplified average soliton. Electronics Letters, 28, 806-807(1992).

    [44] S Chen, Y Chen, K Liu, et al. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber. Optics Express, 28, 17570-17580(2020).

    [45] S Chen, Y Chen, K Liu, et al. W-type normal dispersion thulium-doped fiber-based high-energy all-fiber femtosecond laser at 1.7 µm. Optics Letters, 46, 3637-3640(2021).

    [46] P Ciąćka, A Rampur, A Heidt, et al. Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. Journal of the Optical Society of America B, 35, 1301-1307(2018).

    [47] Y Nomura, T Fuji. Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator. Optics Express, 22, 12461-12466(2014).

    [48] Y Nomura, T Fuji. Generation of Watt-class, sub-50 fs pulses through nonlinear spectral broadening within a thulium-doped fiber amplifier. Optics Express, 25, 13691-13696(2017).

    [49] J X Chen, X Y Li, T J Li, et al. 1.7-μm dissipative soliton Tm-doped fiber laser. Photonics Research, 9, 873-878(2021).

    [50] A Chong, J Buckley, W Renninger, et al. All-normal-dispersion femtosecond fiber laser. Optics Express, 14, 10095-10100(2006).

    [51] L M Zhao, D Y Tang, J Wu. Gain-guided soliton in a positive group-dispersion fiber laser. Optics Letters, 31, 1788-1790(2006).

    [52] P Grelu, N Akhmediev. Dissipative solitons for mode-locked lasers. Nature Photonics, 6, 84-92(2012).

    [53] J X Chen, Z Y Zhan, C Li, et al. 1.7 µm Tm-fiber chirped pulse amplification system with dissipative soliton seed laser. Optics Letters, 46, 5922-5925(2021).

    CLP Journals

    [1] Yuxin Gao, Jixiang Chen, Zexian Zhang, Zeyu Zhan, Zhichao Luo. Research on a 1.7 μm all-fiber mode-locked Tm-doped fiber laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20220234

    Zeyu Zhan, Jixiang Chen, Meng Liu, Aiping Luo, Wencheng Xu, Zhichao Luo. Recent progress of 1.7 μm ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210850
    Download Citation