• Photonics Research
  • Vol. 10, Issue 1, 174 (2022)
Bowen Ma, Junfeng Zhang, and Weiwen Zou*
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (imLic), Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1364/PRJ.437798 Cite this Article Set citation alerts
    Bowen Ma, Junfeng Zhang, Weiwen Zou. Comb-based photonic neural population for parallel and nonlinear processing[J]. Photonics Research, 2022, 10(1): 174 Copy Citation Text show less
    References

    [1] W. Ma, J. M. Beck, P. E. Latham, A. Pouget. Bayesian inference with probabilistic population codes. Nat. Neurosci., 9, 1432-1438(2006).

    [2] T. Womelsdorf, K. Anton-Erxleben, F. Pieper, S. Treue. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nat. Neurosci., 9, 1156-1160(2006).

    [3] A. Pouget, P. Dayan, R. Zemel. Information processing with population codes. Nat. Rev. Neurosci., 1, 125-132(2000).

    [4] K. Roth, S. Shao, J. Gjorgjieva. Efficient population coding depends on stimulus convergence and source of noise. PLoS Comput. Biol., 17, e1008897(2021).

    [5] J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, M. D. Stiles. Neuromorphic spintronics. Nat. Electron., 3, 360-370(2020).

    [6] A. Mizrahi, T. Hirtzlin, A. Fukushima, H. Kubota, S. Yuasa, J. Grollier, D. Querlioz. Neural-like computing with populations of superparamagnetic basis functions. Nat. Commun., 9, 1533(2018).

    [7] M. Romera, P. Talatchian, S. Tsunegi, F. A. Araujo, V. Cros, P. Bortolotti, J. Trastoy, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. Ernoult, D. Vodenicarevic, T. Hirtzlin, N. Locatelli, D. Querlioz, J. Grollier. Vowel recognition with four coupled spin-torque nano-oscillators. Nature, 563, 230-234(2018).

    [8] G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, C. Denz, D. A. B. Miller, D. Psaltis. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [9] B. Ma, W. Zou. Demonstration of a distributed feedback laser diode working as a graded-potential-signaling photonic neuron and its application to neuromorphic information processing. Sci. China Inf. Sci., 63, 160408(2020).

    [10] M. A. Nahmias, B. J. Shastri, A. N. Tait, P. R. Prucnal. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J. Sel. Top. Quantum Electron., 19, 1800212(2013).

    [11] S. Xiang, Z. Ren, Z. Song, Y. Zhang, X. Guo, G. Han, Y. Hao. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans. Neural Netw. Learn. Syst., 32, 2494-2505(2020).

    [12] G. Sarantoglou, M. Skontranis, C. Mesaritakis. All optical integrate and fire neuromorphic node based on single section quantum dot laser. IEEE J. Sel. Top. Quantum Electron., 26, 1900310(2020).

    [13] V. A. Pammi, K. Alfaro-Bittner, M. G. Clerc, S. Barbay. Photonic computing with single and coupled spiking micropillar lasers. IEEE J. Sel. Top. Quantum Electron., 26, 1500307(2020).

    [14] J. Robertson, E. Wade, Y. Kopp, J. Bueno, A. Hurtado. Toward neuromorphic photonic networks of ultrafast spiking laser neurons. IEEE J. Sel. Top. Quantum Electron., 26, 7700715(2020).

    [15] A. N. Tait, T. F. de Lima, M. A. Nahmias, H. B. Miller, H. T. Peng, B. J. Shastri, P. R. Prucnal. Silicon photonic modulator neuron. Phys. Rev. Appl., 11, 064043(2019).

    [16] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [17] T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, P. Bienstman. Cascadable excitability in microrings. Opt. Express, 20, 20292-20308(2012).

    [18] G. Van der Sande, D. Brunner, M. C. Soriano. Advances in photonic reservoir computing. Nanophotonics, 6, 561-576(2017).

    [19] T. Inagaki, K. Inaba, T. Leleu, T. Honjo, T. Ikuta, K. Enbutsu, T. Umeki, R. Kasahara, K. Aihara, H. Takesue. Collective and synchronous dynamics of photonic spiking neurons. Nat. Commun., 12, 2325(2021).

    [20] B. J. Shastri, A. N. Tait, T. F. de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [21] E. Khoram, A. Chen, D. Liu, L. Ying, Q. Wang, M. Yuan, Z. Yu. Nanophotonic media for artificial neural inference. Photon. Res., 7, 823-827(2019).

    [22] L. R. Cortes, D. Onori, H. G. de Chatellus, M. Burla, J. Azana. Towards on-chip photonic-assisted radio-frequency spectral measurement and monitoring. Optica, 7, 434-447(2020).

    [23] A. E. Willner, A. Fallahpour, K. Zou, F. Alishahi, H. Zhou. Optical signal processing aided by optical frequency combs. IEEE J. Sel. Top. Quantum Electron., 27, 7700916(2021).

    [24] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [25] Y. Doumbia, T. Malica, D. Wolfersberger, K. Panajotov, M. Sciamanna. Optical injection dynamics of frequency combs. Opt. Lett., 45, 435-438(2020).

    [26] Y. Doumbia, T. Malica, D. Wolfersberger, K. Panajotov, M. Sciamanna. Nonlinear dynamics of a laser diode with an injection of an optical frequency comb. Opt. Express, 28, 30379-30390(2020).

    [27] A. C. Arevian, V. Kapoor, N. N. Urban. Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nat. Neurosci., 11, 80-87(2008).

    [28] H. Francis, X. Zhang, S. Chen, J. Yu, K. Che, M. Hopkinson, C. Jin. Optical frequency comb generation via cascaded intensity and phase photonic crystal modulators. IEEE J. Sel. Top. Quantum Electron., 27, 2100209(2021).

    [29] A. Murakami, K. Kawashima, K. Atsuki. Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection. IEEE J. Quantum Electron., 39, 1196-1204(2003).

    [30] Y. Zhang, S. Xiang, X. Guo, A. Wen, Y. Hao. The winner-take-all mechanism for all-optical systems of pattern recognition and max-pooling operation. J. Lightwave Technol., 38, 5071-5077(2020).

    [31] W. Zou, B. Ma, S. Xu, X. Zou, X. Wang. Towards an intelligent photonic system. Sci. China Inf. Sci., 63, 160401(2020).

    [32] X. Xu, M. Tan, B. Corcoran, J. Wu, T. G. Nguyen, A. Boes, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. G. Hicks, D. J. Moss. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev., 14, 2000070(2020).

    [33] X. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, D. J. Moss. Microcomb-based photonic RF signal processing. IEEE Photonics Technol. Lett., 31, 1854-1857(2019).

    [34] Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, X. Zhang. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification. Opt. Express, 25, 7520-7529(2017).

    [35] X. Xie, Y. Dai, Y. Ji, K. Xu, Y. Li, J. Wu, J. Lin. Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb. IEEE Photonics Technol. Lett., 24, 661-663(2012).

    [36] C. Xiang, J. Liu, J. Guo, L. Chang, R. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T. J. Kippenberg, J. E. Bowers. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [37] J. Liu, G. Huang, R. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, T. J. Kippenberg. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    Bowen Ma, Junfeng Zhang, Weiwen Zou. Comb-based photonic neural population for parallel and nonlinear processing[J]. Photonics Research, 2022, 10(1): 174
    Download Citation