• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 5, 789 (2023)
TANG Yanni, WANG Yan*, YAN Xiaona, and ZHANG Huifang
Author Affiliations
  • College of Sciences, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.05.018 Cite this Article
    Yanni TANG, Yan WANG, Xiaona YAN, Huifang ZHANG. Infrared transmission characteristics of metal multi-clad waveguides[J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 789 Copy Citation Text show less
    Five-layer asymmetric waveguide structure
    Fig. 1. Five-layer asymmetric waveguide structure
    The magnetic field distribution Hy of the five-layer asymmetric waveguide along the ydirection.(a) TM0pmode; (b) TM1mod; (c) TM2 mode; (d) TM3 mode
    Fig. 2. The magnetic field distribution Hy of the five-layer asymmetric waveguide along the ydirection.(a) TM0pmode; (b) TM1mod; (c) TM2 mode; (d) TM3 mode
    Effective refractive index versus wavelength. (a) Real part of effective refractive index versus wavelength;(b) Imaginary part of effective refractive index versus wavelength [insets: Re(neff) and Im(neff) of the TM0p mode]
    Fig. 3. Effective refractive index versus wavelength. (a) Real part of effective refractive index versus wavelength;(b) Imaginary part of effective refractive index versus wavelength [insets: Re(neff) and Im(neff) of the TM0p mode]
    The average power density of the Gaussian beam normal incident on the xz plane at g = 2.5 μm
    Fig. 4. The average power density of the Gaussian beam normal incident on the xz plane at g = 2.5 μm
    Coupling efficiency of different modes
    Fig. 5. Coupling efficiency of different modes
    Transmission spectra of different refractive indices. (a) z = 2.5 μm, TM0pmode; (b) z = 2.5 μm, Superimposed mode;(c) z = 5 μm, TM0p mode; (d) z = 5 μm, Superimposed mode
    Fig. 6. Transmission spectra of different refractive indices. (a) z = 2.5 μm, TM0pmode; (b) z = 2.5 μm, Superimposed mode;(c) z = 5 μm, TM0p mode; (d) z = 5 μm, Superimposed mode
    ModesTM0pTM1TM2TM3
    neff = kz/ k01.01544 + 0.010314i0.99421 + 0.021480i0.81271 + 0.01680i0.37821 + 0.03542i
    Table 1. Effective refractive index of the four waveguide modes
    Waveguide lengthModesλmin(n= 1)λmin(n= 1.02)λmin(n= 1.04)λ
    z= 2.5μmTM0p1.15 μm1.18 μm1.21 μm30 nm
    叠加后的模式1.14 μm1.165 μm1.19 μm25 nm
    z= 5μmTM0p1.16 μm1.185 μm1.21 μm25 nm
    叠加后的模式1.15 μm1.17 μm1.19 μm20 nm
    Table 2. The wavelength corresponding to the minimum value of different refractive index
    Waveguide lengthModesλmax-λmin(n= 1)λmax-λmin(n= 1.02)λmax-λmin(n= 1.04)△(λmax-λmin)
    z= 2.5μmTM0p0.61 μm0.63 μm0.65 μm20 nm
    叠加后的模式0.60 μm0.625 μm0.65 μm25 nm
    z= 5μmTM0p0.63 μm0.655 μm0.68 μm25 nm
    叠加后的模式0.62 μm0.655 μm0.69 μm35 nm
    Table 3. Relative wavelength of different refractive index(λmax-λmin